Molecular cloning of the Notophthalmus viridescens radical fringe cDNA and characterization of its expression during forelimb development and adult forelimb regeneration. (1/73)

Larval and adult newts provide important experimental models to study limb development and regeneration. These animals have exceptional ability to regenerate their appendages, as well as other vital structures. Our research examines the role of the fringe gene (fng) in the developing and regenerating adult newt forelimb. Fringe codes for a secretory protein. It was first discovered in Drosophila, and later homologues were isolated in Xenopus laevis, chick and mouse. This gene has been highly conserved throughout evolution, indicating its crucial role in vertebrate and invertebrate development. We have isolated, cloned, and sequenced the full length of the Notophthalmus viridescens radical fringe cDNA (nrFng) by screening a newt forelimb blastema cDNA library with a 500-bp fragment of the Xenopus lunatic fringe cDNA. The newt fringe cDNA codes for a 396 amino acid protein with a predicted N-terminal signal sequence. Newt fringe shows high homology with radical fringe homologues of many species. Whole mount mRNA in situ hybridization on several stages of newt limb development reveals that nrFng is first expressed in the limb field, with intense expression as the limb bud develops. However, gene expression diminishes with more advanced digit development. A significant role in adult forelimb regeneration is also evident, as we isolated the cDNA from a regeneration-specific library and found it highly expressed during the regenerative phases of active cell division and then down regulated at sites undergoing differentiation and morphogenesis.  (+info)

RA regulation of keratin expression and myogenesis suggests different ways of regenerating muscle in adult amphibian limbs. (2/73)

Formation of a regeneration blastema following limb amputation is believed to occur through a process of dedifferentiation. It has been suggested, however, that the cells contributed to the blastema by the stump muscle are satellite-like cells, rather than cells originated by dedifferentiation. We have previously shown that simple epithelial keratins 8 and 18 are expressed in the mesenchymal progenitor cells of the regenerating amphibian limb and in cultured cells with myogenic potential, and that their expression appears to be causally related to changes in proliferation and differentiation. We show here that retinoic acid (RA) affects the expression of these keratins differently in myogenic cells originated from normal limb and limb blastema. Furthermore, we find that the effects of RA on proliferation, myogenic differentiation and adhesion of these cells also differ. In fact, whereas RA does not affect keratin expression, proliferation or myogenic differentiation in blastemal cells, it does decrease keratin levels and thymidine incorporation and increase myogenesis in cells from normal limb. Conversely, RA increases cell adhesion only in blastemal cells. Significantly, these effects of RA on cultured cells are consistent with those observed in vivo. Overall the results presented here suggest that in the urodele limb there are two distinct cell populations with myogenic potential, one originating from dedifferentiation and one equivalent to the satellite cells of the mammalian muscle, which are likely to be primarily involved in blastema formation and muscle repair, respectively.  (+info)

Regulation of Prox 1 during lens regeneration. (3/73)

PURPOSE: To determine the expression pattern of Prox 1 during the process of lens regeneration in the urodele Notophthalmus viridescens. METHODS: Polymerase chain reaction was performed to amplify a partial newt Prox 1 sequence. In situ hybridization and immunodetection methods were used to detect the Prox 1 mRNA and the Prox 1 protein, respectively. RESULTS: Prox 1 mRNA was present in the retina and in the lens (in the epithelium and bow region) of the intact eye. Prox 1 protein was found to be predominantly present in the lens and dorsal iris of the intact eye, although some trace levels of Prox 1 protein were detected in the ventral iris as well. After lentectomy, expression of the mRNA was also pronounced in the dorsal dedifferentiating iris and the regenerating lens. The ventral iris also expressed Prox 1 but seemingly at lower levels. Although Prox 1 protein showed upregulation in the dorsal iris during the process of lens regeneration, trace levels were also detected in the ventral iris. In the retina, Prox 1 protein was distributed in horizontal cells of the inner nuclear layer, whereas the mRNA was expressed in all layers of the retina. CONCLUSIONS: Prox 1 was unevenly distributed in the intact cells of the newt iris, with significantly higher levels of Prox 1 protein present in the dorsal versus the ventral margin. This protein was differentially regulated during the process of lens regeneration, with obvious upregulation in the dorsal iris. Prox 1 is the first transcriptional factor to be shown to be regulated in the dorsal versus ventral iris during the process of lens regeneration.  (+info)

Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. (4/73)

We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem-loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.  (+info)

Role of retinoic acid in lens regeneration. (5/73)

Prompted by the actions of retinoids and their receptors in gene regulation, in the developing eye and especially in the lens, we have undertaken a detailed study to examine the effects of retinoids on urodele lens regeneration. First, we examined the effects of exogenous retinoids. It was found that exogenous retinoids had no significant effect on lens regeneration. However, when synthesis of retinoic acid was inhibited by disulfiram, or when the function of the retinoid receptors was impaired by using a RAR antagonist, the process of lens regeneration was dramatically affected. In the majority of the cases, lens regeneration was inhibited and lens morphogenesis was disrupted. In a few cases, we were also able to observe ectopic lens regeneration from places other than the normal site, which is from the dorsal iris. The most spectacular case was the regeneration of a lens from the cornea, an event possible only in premetamorphic frogs. These data show that inhibition of retinoid receptors is paramount for the normal course and distribution of lens regeneration. We have also examined expression of RAR-delta during lens regeneration. This receptor was expressed highly in the regenerating lens only. Therefore, it seems that this receptor is specific for the regeneration process and consequently such expression correlates well with the effects of RAR inhibition observed in our studies.  (+info)

Endosulfan exposure disrupts pheromonal systems in the red-spotted newt: a mechanism for subtle effects of environmental chemicals. (6/73)

Because chemicals introduced into the environment by humans can affect both long-term survivorship and reproduction of amphibians, discovering the specific mechanisms through which these chemicals act may facilitate the development of plans for amphibian conservation. We investigated the amphibian pheromonal system as a potential target of common environmental chemicals. By treating female red-spotted newts, Notophthalmus viridescens, to a commonly used insecticide, endosulfan, we found that the pheromonal system is highly susceptible to low-concentration exposure. The impairment of the pheromonal system directly led to disrupted mate choice and lowered mating success. There were no other notable physiologic or behavioral changes demonstrated by the animals at the insecticide concentrations administered. Our findings suggest that the amphibian pheromonal system is one of the systems subject to subtle negative effects of environmental chemicals.  (+info)

The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. (7/73)

Theoretical models implicating specialized photoreceptors in the detection of the geomagnetic field have been the impetus for studying the effects of light on magnetic compass orientation. Magnetic orientation in flies, amphibians and birds has been found to be influenced by light, and in all these groups a shift of approximately 90 degrees in the direction of magnetic compass orientation has been observed under certain wavelengths and/or intensities of light. In the eastern red-spotted newt Notophthalmus viridescens, wavelength-dependent effects of light on magnetic compass orientation appear to result from an antagonistic interaction between short-wavelength (< or = 450 nm) and long-wavelength (> or = 500 nm) photoreception mechanisms. We have demonstrated that at least the short-wavelength input to the newt's magnetic compass is mediated by extraocular photoreceptors located in or near the pineal organ, and here we present new findings that indicate that the putative long-wavelength mechanism is also associated with pineal photoreceptors. Interestingly, the amphibian pineal organ mediates orientation to both the e-vector of plane-polarized light and the magnetic field. Although the wavelength-dependence of the polarized light orientation in amphibians has not been studied, polarization sensitivity in fishes appears to be mediated by two antagonistic photoreception mechanisms that have similar spectral characteristics to those of the newts' magnetic compass response. These parallels, along with similarities in the types of receptors that are expected to be involved in light-dependent magnetoreception and polarized light detection, suggest that similar photoreception mechanisms may mediate the light-dependent magnetic and polarized light compasses.  (+info)

Transmission of the Ambystoma tigrinum virus to alternative hosts. (8/73)

Ambystoma tigrinum virus (ATV) is a lethal virus originally isolated from Sonora tiger salamanders Ambystoma tigrinum stebbinsi in the San Rafael Valley in southern Arizona. USA. ATV is implicated in several salamander epizootics. We attempted to transmit ATV experimentally to fish and amphibians by injection, water bath exposure, or feeding to test whether ATV can cause clinical signs of infection or be recovered from exposed individuals that do not show clinical signs. Cell culture and polymerase chain reaction of the viral major capsid protein gene were used for viral detection. Salamanders and newts became infected with ATV and the virus was recovered from these animals, but virus could not be recovered from any of the frogs or fish tested. These results suggest that ATV may only infect urodeles and that fish and frogs may not be susceptible to ATV infection.  (+info)