Drug-protein binding and blood-brain barrier permeability. (1/425)

The permeability surface area (PS) product, an index of permeability of the blood-brain barrier (BBB), was measured by using the in situ perfusion method. In the cerebral circulation, the fraction of drug that permeates into the brain through the BBB is not only the unbound fraction but also the fraction dissociated from the protein in the perfusate. The sum of these two fractions, the apparent exchangeable fraction, was estimated by fitting the parameters of the BBB permeability under the condition of varying BSA concentrations in the perfusate. The unbound fraction of drugs in a buffer containing 0.5 mM BSA was measured by using the ultrafiltration method in vitro, and the apparent exchangeable fraction was measured in vivo by using the intracarotid artery injection method. The apparent exchange fraction was 100% for S-8510, 96.5% for diazepam, 90.9% for caffeine, 38.3% for S-312-d, 33.1% for propranolol, and 6.68% for (+)-S-145 Na, and each of these was higher than the corresponding unbound fraction in vitro in all drugs. The apparent exchangeable fractions, for example, were 8 times higher for diazepam and 38 times for S-312-d than the unbound fractions in vitro. The apparent exchangeable fraction of drugs was also estimated from the parameters obtained with the perfusion method. Because drugs can be infused for an arbitrary length of time in the perfusion method, substances with low permeability can be measured. The apparent exchangeable fractions obtained with this method were almost the same as those obtained with the intracarotid artery injection method.  (+info)

Central nervous system-mediated hyperglycemic effects of NIK-247, a cholinesterase inhibitor, and MKC-231, a choline uptake enhancer, in rats. (2/425)

We investigated the effects of intracerebroventricular administration of NIK-247 (9-amino-2,3,5,6,7,8-hexahydro-1H-cyclo-penta(b)-quinoline monohydrate hydrochloride; a cholinesterase inhibitor) or MKC-231 (2-(2-oxypyrrolidin-1-yl)-N-(2,3-dimethyl-5,6,7,8-tetrahydrofur o[2,3-b]quinolin-4-yl) acetoamide; a choline uptake enhancer) on plasma glucose level in comparison with that of neostigmine administration in rats. The extents of NIK-247- and MKC-231-induced hyperglycemia were considerably less than that by neostigmine, suggesting that the potencies of the drugs to produce the peripheral hyperglycemia may be pharmacologically negligible.  (+info)

THA improves word priming and clonidine enhances fluency and working memory in Alzheimer's disease. (3/425)

We investigated the effects of a single administration of a cholinesterase inhibitor, tetrahydroaminoacridine (THA, 25 and 50 mg, orally), and an alpha 2-agonist, clonidine (0.5 and 2 micrograms/kg, orally), on neuropsychologic performance in two groups of patients with Alzheimer's disease (AD). Clonidine enhanced a spatial working memory and verbal fluency, but had no effect on spatial span or word priming. THA enhanced word priming, but had no effect on other performance measures. Our data suggests that degeneration of the LC noradrenergic system and the cholinergic cells of the basal forebrain have different functional consequences during the progression of AD. Finally, a combined treatment with noradrenergic and cholinergic drugs might produce a qualitatively broader effect on cognitive functions than either of the treatments alone, and more effectively attenuate clinical dementia.  (+info)

Diagnosis of dementia and treatment of Alzheimer's disease. Pharmacologic management of disease progression and cognitive impairment. (4/425)

OBJECTIVE: To highlight the importance of family physicians in the management of Alzheimer's disease (AD) and related dementias. To provide an update on the diagnostic workup of people with suspected dementia and on the pharmacologic management of cognitive impairment and disease progression in AD. QUALITY OF EVIDENCE: MEDLINE and Psychological Abstracts were searched using the terms "cognitive enhancers" or a specific drug name and "dementia (exp)." Evidence is generally limited but promising. Methodologic flaws in existing research likely to affect clinicians are briefly reviewed. MAIN MESSAGE: Increasing evidence suggests that early intervention can delay the progression of AD and improve the symptoms and function of those affected. Available treatments have modest but important effects on the outcome of patients with AD; some patients respond dramatically. Most currently available treatments are relatively safe in carefully selected cases. CONCLUSIONS: The diagnostic workup of most cases of dementia can at least be initiated in family physicians' offices. Beginning the workup is important because, for treating AD, the earlier you start, the better. Donepezil, vitamin E, and, in the near future, propentofylline are the main pharmacologic choices for improving cognition and slowing disease progression.  (+info)

Characterization of the binding of a novel radioligand to CCKB/gastrin receptors in membranes from rat cerebral cortex. (5/425)

1. We have investigated the binding of a novel radiolabelled CCKB/gastrin receptor ligand, [3H]-JB93182 (5[[[(1S)-[[(3,5-dicarboxyphenyl)amino]carbonyl]-2-phenylethyla mino]-carbonyl]-6-[[(1-adamantylmethyl) amino]carbonyl]-indole), to sites in rat cortex membranes. 2. The [3H]-JB93182 was 97% radiochemically pure as assessed by reverse-phase HPLC (RP-HPLC) and was not degraded by incubation (150 min) with rat cortex membranes. 3. Saturation analysis indicated that [3H]-JB93182 labelled a homogeneous population of receptors in rat cortex membranes (pKD=9.48+/-0.08, Bmax=3.61+/-0.65 pmol g(-1) tissue, nH=0.97+/-0.02, n=5). The pKD was not significantly different when estimated by association-dissociation analysis (pKD=9.73+/-0.11; n=10). 4. In competition studies, the low affinity of the CCKA receptor antagonists, L-364,718; SR27897 and 2-NAP, suggest that, under the assay conditions employed, [3H]-JB93182 (0.3 nM) does not label CCKA receptors in the rat cortex. 5. The affinity estimates obtained for reference CCKB/gastrin receptor antagonists were indistinguishable from one of the affinity values obtained when a two site model was used to interpret [125I]-BH-CCK8S competition curves obtained in the same tissue (Harper et al., 1999). 6. This study provides further evidence for the existence of two CCKB/gastrin sites in rat cortex. [3H]-JB93182 appears to label selectively sites previously designated as gastrin-G1 and therefore it may be a useful compound for the further discrimination and characterization of these putative receptor subtypes.  (+info)

Neurometabolic effects of psilocybin, 3,4-methylenedioxyethylamphetamine (MDE) and d-methamphetamine in healthy volunteers. A double-blind, placebo-controlled PET study with [18F]FDG. (6/425)

The neurometabolic effects of the hallucinogen psilocybin (PSI; 0.2 mg/kg), the entactogen 3,4-methylenedioxyethylamphetamine (MDE; 2 mg/kg) and the stimulant d-methamphetamine (METH; 0.2-0.4 mg/kg) and the drugs' interactions with a prefrontal activation task were investigated in a double-blind, placebo-controlled human [F-18]fluorodeoxyglucoseFDG-positron emission tomographicPET study (each group: n = 8). Subjects underwent two scans (control: word repetition; activation word association) within 2-4 weeks. Psilocybin increased rMRGlu in distinct right hemispheric frontotemporal cortical regions, particularly in the anterior cingulate and decreased rMRGlu in the thalamus. Both MDE and METH induced cortical hypometabolism and cerebellar hypermetabolism. In the MDE group, cortical hypometabolism was more pronounced in frontal regions, with the exception of the right anterior cingulate, which tended to be hyperactive. Cognitive activation-related increases in left frontocortical regions were attenuated under all three psychoactive substances, but less so under MDE. Taking into account performance data and subjective reports on task difficulty, these effects may result from different mechanisms across the three groups. Our PSI data are in line with studies on acute schizophrenic patients suggesting frontal overactivity at rest, but diminished capacity to activate prefrontal regions upon cognitive demand. The MDE data support the hypothesis that entactogens constitute a distinct psychoactive substance class, which takes an intermediate position between stimulants and hallucinogens.  (+info)

Activity of putative cognition enhancers in kynurenate test performed with human neocortex slices. (7/425)

Some cognition enhancers were previously shown to potently prevent antagonism of the N-methyl-D-aspartate (NMDA)-evoked release of norepinephrine (NE) brought about in slices of rat hippocampus by kynurenic acid, an endogenous NMDA receptor blocker. We have examined the impact of putative nootropic agents in the kynurenate test performed with slices of human cerebral cortex from patients undergoing neurosurgery. In slices of human neocortex, local application of NMDA evoked release of [3H]NE; the effect of NMDA was antagonized by several NMDA receptor antagonists, including kynurenic acid. The antagonism of the NMDA-evoked [3H]NE release produced by 300 microM kynurenate was potently (EC50 <10 microM) prevented by most of the nootropics tested, including aniracetam, oxiracetam, D-cycloserine, and the glutamate analog CR 2249 (but not its enantiomer CR 2361). Nicotine or tacrine (up to 10 microM) did not show any effect in the kynurenate test. Nicotine (30-100 microM) itself increased the release of [3H]NE; interestingly, the nicotine-evoked overflow was blocked not only by the nicotin receptor antagonist mecamylamine but also by NMDA receptor antagonists, suggesting an indirect mechanism mediated by glutamate/aspartate release. To conclude, the similarities between the data obtained here with human neocortex slices and those previously obtained in the rat indicate that the kynurenate test performed with rat brain slices may represent a useful biochemical assay to study cognition-enhancing drugs.  (+info)

A review of nutrients and botanicals in the integrative management of cognitive dysfunction. (8/425)

Dementias and other severe cognitive dysfunction states pose a daunting challenge to existing medical management strategies. An integrative, early intervention approach seems warranted. Whereas, allopathic treatment options are highly limited, nutritional and botanical therapies are available which have proven degrees of efficacy and generally favorable benefit-to-risk profiles. This review covers five such therapies: phosphatidylserine (PS), acetyl-l-carnitine (ALC), vinpocetine, Ginkgo biloba extract (GbE), and Bacopa monniera (Bacopa). PS is a phospholipid enriched in the brain, validated through double-blind trials for improving memory, learning, concentration, word recall, and mood in middle-aged and elderly subjects with dementia or age-related cognitive decline. PS has an excellent benefit-to-risk profile. ALC is an energizer and metabolic cofactor which also benefits various cognitive functions in the middle-aged and elderly, but with a slightly less favorable benefit-to-risk profile. Vinpocetine, found in the lesser periwinkle Vinca minor, is an excellent vasodilator and cerebral metabolic enhancer with proven benefits for vascular-based cognitive dysfunction. Two meta-analyses of GbE demonstrate the best preparations offer limited benefits for vascular insufficiencies and even more limited benefits for Alzheimer's, while "commodity" GbE products offer little benefit, if any at all. GbE (and probably also vinpocetine) is incompatible with blood-thinning drugs. Bacopa is an Ayurvedic botanical with apparent anti-anxiety, anti-fatigue, and memory-strengthening effects. These five substances offer interesting contributions to a personalized approach for restoring cognitive function, perhaps eventually in conjunction with the judicious application of growth factors.  (+info)