BTEB2, a Kruppel-like transcription factor, regulates expression of the SMemb/Nonmuscle myosin heavy chain B (SMemb/NMHC-B) gene. (1/173)

We have recently characterized the promoter region of the rabbit embryonic smooth muscle myosin heavy chain (SMemb/NMHC-B) gene and identified the 15-bp sequence, designated SE1, located at -105 from the transcriptional start site as an important regulatory element for its transcriptional activity in a smooth muscle cell (SMC) line. In this study, we attempted to isolate cDNA clones encoding for the transcription factors that control the expression of the SMemb gene through binding to this cis-regulatory element. We screened a lambdagt11 cDNA library prepared from C2/2 cells, a rabbit-derived SMC line, by using a radiolabeled concatenated oligonucleotide containing SE1 as a probe. Sequence analysis revealed that one of the cDNA clones corresponds to the rabbit homologue of basic transcriptional element binding protein-2 (BTEB2), which has previously been identified as one of the Kruppel-like transcription factor. Gel mobility shift assays and antibody supershift analyses with nuclear extracts from C2/2 cells indicate that BTEB2 is a major component of nuclear factor:SE1 complexes. Furthermore, a glutathione S-transferase-BTEB2 fusion protein binds to the SE1 in a sequence-specific manner. In support of the functionality of BTEB2 binding, basal promoter activity and BTEB2-induced transcriptional activation were markedly attenuated by the disruption of the SE1. In adult rabbit tissues, BTEB2 mRNA was most highly expressed in intestine, urinary bladder, and uterus. BTEB2 mRNA levels were downregulated in rabbit aorta during normal development. Moreover, immunohistochemical analysis indicated a marked induction of BTEB2 protein in the neointimal SMC after balloon injury in rat aorta. These results suggest that BTEB2 mediates the transcriptional regulation of the SMemb/NMHC-B gene and possibly plays a role in regulating gene expression during phenotypic modulation of vascular SMC.  (+info)

A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. (2/173)

Double-stranded RNA (dsRNA) inhibits expression of homologous genes by a process involving messenger RNA degradation. To gain insight into the mechanism of degradation, we examined how RNA interference is affected by mutations in the smg genes, which are required for nonsense-mediated decay. For three of six smg genes tested, mutations resulted in animals that were initially silenced by dsRNA but then recovered; wild-type animals remained silenced. The levels of target messenger RNAs were restored during recovery, and RNA editing and degradation of the dsRNA were identical to those of the wild type. We suggest that persistence of RNA interference relies on a subset of smg genes.  (+info)

Alterations in expression of myosin and myosin light chain kinases in response to vascular injury. (3/173)

Histochemical analysis of balloon-injured rat carotid arteries revealed a coordinated expression of nonmuscle myosin heavy chain-A and -B (NM-A and NM-B) in response to injury. Expression of these nonmuscle myosin forms shifts from the media to the adventitia and intima. In contrast, expression of smooth muscle myosin heavy chain-1 (SM-1) within the media is not altered, whereas smooth muscle myosin heavy chain-2 (SM-2) expression declines. Western blotting shows a statistically significant increase in expression of NM-A that occurs within 6 h in response to carotid injury, suggesting this myosin form may be an appropriate experimental marker for proliferating, migrating cells in injured vessels. No overall change in the relative expression level of NM-B was detected, suggesting that compensatory declines in media expression are balanced by increases in the intima and adventitia. Expression of SM-1 did not change in response to injury, whereas the expression of SM-2 significantly declined between 24 h and 7 days. Expression of myosin light chain kinase is also negatively regulated, and the decline in its expression parallels downregulation of SM-2.  (+info)

Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. (4/173)

BACKGROUND: The molecular basis of idiopathic dilated cardiomyopathy, a primary myocardial disorder that results in reduced contractile function, is largely unknown. Some cases of familial dilated cardiomyopathy are caused by mutations in cardiac cytoskeletal proteins; this finding implicates defects in contractile-force transmission as one mechanism underlying this disorder. To elucidate this important cause of heart failure, we investigated other genetic causes of dilated cardiomyopathy. METHODS: Clinical evaluations were performed in 21 kindreds with familial dilated cardiomyopathy. A genome-wide linkage study prompted a search of the genes encoding beta-myosin heavy chain, troponin T, troponin I, and alpha-tropomyosin for disease-causing mutations. RESULTS: A genetic locus for mutations associated with dilated cardiomyopathy was identified at chromosome 14q11.2-13 (maximal lod score, 5.11; theta=0), where the gene for cardiac beta-myosin heavy chain is encoded. Analyses of this and other genes for sarcomere proteins identified disease-causing dominant mutations in four kindreds. Cardiac beta-myosin heavy-chain missense mutations (Ser532Pro and Phe764Leu) and a deletion in cardiac troponin T (deltaLys210) caused early-onset ventricular dilatation (average age at diagnosis, 24 years) and diminished contractile function and frequently resulted in heart failure. Affected persons had neither antecedent cardiac hypertrophy (average maximal left-ventricular-wall thickness, 8.5 mm) nor histopathological findings characteristic of hypertrophy. CONCLUSION: Mutations in sarcomere protein genes account for approximately 10 percent of cases of familial dilated cardiomyopathy and are particularly prevalent in families with early-onset ventricular dilatation and dysfunction. Because distinct mutations in sarcomere proteins cause either dilated or hypertrophic cardiomyopathy, the effects of mutant sarcomere proteins on muscle mechanics must trigger two different series of events that remodel the heart.  (+info)

Homeobox protein Hex induces SMemb/nonmuscle myosin heavy chain-B gene expression through the cAMP-responsive element. (5/173)

Recent studies have shown that the homeobox gene Hex plays an important role in inducing differentiation of vascular endothelial cells. In this study, we examined the expression of Hex in vascular smooth muscle cells (VSMCs) in vitro and in vivo. Immunohistochemistry showed a marked induction of Hex protein in neointimal VSMCs after balloon injury in rat aorta. Western and reverse transcriptase-polymerase chain reaction analyses demonstrated that Hex was abundantly expressed in cultured VSMCs, whereas it was undetectable in other cell types or in normal aorta. The expression pattern of Hex was similar to that of SMemb/NMHC-B, a nonmuscle isoform of myosin heavy chain that we have previously reported to be a molecular marker of dedifferentiated VSMCs. We next examined the role of Hex in SMemb gene transcription. Promoter analysis demonstrated that the sequence identical to consensus cAMP-responsive element (CRE) located at -481 of the SMemb promoter was critical for Hex responsiveness. Mutant Hex expression vector, which lacks the homeodomain, failed to stimulate SMemb gene transcription, suggesting the requirement of the homeodomain for its transactivation. Elecrophoretic mobility shift assay showed that Hex binds to a consensus binding sequence for homeobox proteins, but not to CRE. Cotransfection of protein kinase A expression vector increased the ability of Hex to stimulate SMemb promoter activity in a CRE-dependent manner. Overexpression of CRE binding protein (CREB), but not Mut-CREB which contains mutation at Ser133, strongly activated Hex-induced SMemb promoter activity. These results suggest that Hex mediates transcriptional induction of the SMemb/NMHC-B gene via its homeodomain, and Hex can function as a transcriptional modulator of CRE-dependent transcription in VSMCs.  (+info)

Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. (6/173)

Vascular endothelial growth factor (VEGF) and its two receptors, Fms-like tyrosine kinase 1 (Flt-1) (VEGFR-1) and KDR/Flk-1 (VEGFR-2), have been demonstrated to be an essential regulatory system for blood vessel formation in mammals. KDR is a major positive signal transducer for angiogenesis through its strong tyrosine kinase activity. Flt-1 has a unique biochemical activity, 10-fold higher affinity to VEGF, whereas much weaker tyrosine kinase activity compared with KDR. Recently, we and others have shown that Flt-1 has a negative regulatory function for physiological angiogenesis in the embryo, possibly with its strong VEGF-trapping activity. However, it is still open to question whether the tyrosine kinase of Flt-1 has any positive role in angiogenesis at adult stages. In this study, we examined whether Flt-1+ could be a positive signal transducer under certain pathological conditions, such as angiogenesis with tumors overexpressing a Flt-1-specific, VEGF-related ligand. Our results show clearly that murine Lewis lung carcinoma cells overexpressing placenta growth factor-2, an Flt-1-specific ligand, grew in wild-type mice much faster than in Flt-1 tyrosine kinase domain-deficient mice. Blood vessel formation in tumor tissue was higher in wild-type mice than in Flt-1 tyrosine kinase-deficient mice. On the other hand, the same carcinoma cells overexpressing VEGF showed no clear difference in the tumor growth rate between these two genotypes of mice. These results indicate that Flt-1 is a positive regulator using its tyrosine kinase under pathological conditions when the Flt-1-specific ligand is abnormally highly expressed. Thus, Flt-1 has a dual function in angiogenesis, acting in a positive or negative manner in different biological conditions.  (+info)

Suppression of the tumorigenicity of mutant p53-transformed rat embryo fibroblasts through expression of a newly cloned rat nonmuscle myosin heavy chain-B. (7/173)

In our previous study, a rat homolog of human nonmuscle myosin heavy chain-B (nmMHC-B) was identified by mRNA differential display comparing of transformed against nontransformed Rat 6 cells overexpressing mutant p53val135 gene. The nmMHC-B was found to be expressed in normal Rat 6 embryo fibroblast cell line, but markedly suppressed in the mutant p53val135-transformed Rat 6 cells. To examine the possible involvement of nmMHC-B in cell transformation, we first cloned and sequenced the full length cDNA of rat nmMHC-B, which was then cloned into an ecdysone-expression vector. The resulting construct was introduced into the T2 cell line, a mutant p53val135-transformed Rat 6 cells lacking the expression of the endogenous nmMHC-B. The clonal transfectants, expressing muristerone A-induced nmMHC-B, displayed a slightly flatter morphology and reached to a lower saturation density compared to the parental transformed cells. Reconstitution of actin filamental bundles was also clearly seen in cells overexpressing the nmMHC-B. In soft agar assays, nmMHC-B transfectants formed fewer and substantially smaller colonies than the parental cells in response to muristerone A induction. Moreover, it was strikingly effective in suppressing the tumorigenicity of the T2 cells when tested in nude mice. Thus, the nmMHC-B, known as a component of the cytoskeletal network, may act as a tumor suppressor gene. Our current finding may reveal a novel role of nmMHC-B in regulating cell growth and cell signaling in nonmuscle cells. Oncogene (2001) 20, 58 - 68.  (+info)

Impaired sarcoplasmic reticulum function leads to contractile dysfunction and cardiac hypertrophy. (8/173)

Sarcoplasmic reticulum (SR)-mediated Ca(2+) sequestration and release are important determinants of cardiac contractility. In end-stage heart failure SR dysfunction has been proposed to contribute to the impaired cardiac performance. In this study we tested the hypothesis that a targeted interference with SR function can be a primary cause of contractile impairment that in turn might alter cardiac gene expression and induce cardiac hypertrophy. To study this we developed a novel animal model in which ryanodine, a substance that alters SR Ca(2+) release, was added to the drinking water of mice. After 1 wk of treatment, in vivo hemodynamic measurements showed a 28% reduction in the maximum speed of contraction (+dP/dt(max)) and a 24% reduction in the maximum speed of relaxation (-dP/dt(max)). The slowing of cardiac relaxation was confirmed in isolated papillary muscles. The late phase of relaxation expressed as the time from 50% to 90% relaxation was prolonged by 22%. After 4 wk of ryanodine administration the animals had developed a significant cardiac hypertrophy that was most prominent in both atria (right atrium +115%, left atrium +100%, right ventricle +23%, and left ventricle +13%). This was accompanied by molecular changes including a threefold increase in atrial natriuretic factor mRNA and a sixfold increase in beta-myosin heavy chain mRNA. Sarcoplasmic endoplasmic reticulum Ca(2+) mRNA was reduced by 18%. These data suggest that selective impairment of SR function in vivo can induce changes in cardiac gene expression and promote cardiac growth.  (+info)