Expression of the Methanobacterium thermoautotrophicum hpt gene, encoding hypoxanthine (Guanine) phosphoribosyltransferase, in Escherichia coli. (1/231)

The hpt gene from the archaeon Methanobacterium thermoautotrophicum, encoding hypoxanthine (guanine) phosphoribosyltransferase, was cloned by functional complementation into Escherichia coli. The hpt-encoded amino acid sequence is most similar to adenine phosphoribosyltransferases, but the encoded enzyme has activity only with hypoxanthine and guanine. The synthesis of the recombinant enzyme is apparently limited by the presence of the rare arginine codons AGA and AGG and the rare isoleucine AUA codon on the hpt gene. The recombinant enzyme was purified to apparent homogeneity.  (+info)

Function of coenzyme F420 in aerobic catabolism of 2,4, 6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. (2/231)

2,4,6-Trinitrophenol (picric acid) and 2,4-dinitrophenol were readily biodegraded by the strain Nocardioides simplex FJ2-1A. Aerobic bacterial degradation of these pi-electron-deficient aromatic compounds is initiated by hydrogenation at the aromatic ring. A two-component enzyme system was identified which catalyzes hydride transfer to picric acid and 2,4-dinitrophenol. Enzymatic activity was dependent on NADPH and coenzyme F420. The latter could be replaced by an authentic preparation of coenzyme F420 from Methanobacterium thermoautotrophicum. One of the protein components functions as a NADPH-dependent F420 reductase. A second component is a hydride transferase which transfers hydride from reduced coenzyme F420 to the aromatic system of the nitrophenols. The N-terminal sequence of the F420 reductase showed high homology with an F420-dependent NADP reductase found in archaea. In contrast, no N-terminal similarity to any known protein was found for the hydride-transferring enzyme.  (+info)

Methanobacterium thermoformicicum thymine DNA mismatch glycosylase: conversion of an N-glycosylase to an AP lyase. (3/231)

The thymine DNA mismatch glycosylase from Methanobacterium thermoformicicum, a member of the endonuclease III family of repair proteins, excises the pyrimidine base from T-G and U-G mismatches. Unlike endonuclease III, it does not cleave the phosphodiester backbone by a beta-elimination reaction. This cleavage event has been attributed to a nucleophilic attack by the conserved Lys120 of endonuclease III on the aldehyde group at C1' of the deoxyribose and subsequent Schiff base formation. The inability of TDG to perform this beta-elimination event appears to be due to the presence of a tyrosine residue at the position equivalent to Lys120 in endonuclease III. The purpose of this work was to investigate the requirements for AP lyase activity. We replaced Tyr126 in TDG with a lysine residue to determine if this replacement would yield an enzyme with an associated AP lyase activity capable of removing a mismatched pyrimidine. We observed that this replacement abolishes the glycosylase activity of TDG but does not affect substrate recognition. It does, however, convert the enzyme into an AP lyase. Chemical trapping assays show that this cleavage proceeds through a Schiff base intermediate and suggest that the amino acid at position 126 interacts with C1' on the deoxyribose sugar.  (+info)

The energy conserving methyltetrahydromethanopterin:coenzyme M methyltransferase complex from methanogenic archaea: function of the subunit MtrH. (4/231)

In methanogenic archaea the transfer of the methyl group of N5-methyltetrahydromethanopterin to coenzyme M is coupled with energy conservation. The reaction is catalyzed by a membrane associated multienzyme complex composed of eight different subunits MtrA-H. The 23 kDa subunit MtrA harbors a corrinoid prosthetic group which is methylated and demethylated in the catalytic cycle. We report here that the 34 kDa subunit MtrH catalyzes the methylation reaction. MtrH was purified and shown to exhibit methyltetrahydromethanopterin:cob(I)alamin methyltransferase activity. Sequence comparison revealed similarity of MtrH with MetH from Escherichia coli and AcsE from Clostridium thermoaceticum: both enzymes exhibit methyltetrahydrofolate:cob(I)alamin methyltransferase activity.  (+info)

RNase P RNAs from some Archaea are catalytically active. (5/231)

The RNA subunits of RNase Ps of Archaea and eukaryotes have been thought to depend fundamentally on protein for activity, unlike those of Bacteria that are capable of efficient catalysis in the absence of protein. Although the eukaryotic RNase P RNAs are quite different than those of Bacteria in both sequence and structure, the archaeal RNAs generally contain the sequences and structures of the bacterial, phylogenetically conserved catalytic core. A spectrum of archaeal RNase P RNAs were therefore tested for activity in a wide range of conditions. Many remain inactive in ionically extreme conditions, but catalytic activity could be detected from those of the methanobacteria, thermococci, and halobacteria. Chimeric holoenzymes, reconstituted from the Methanobacterium RNase P RNA and the Bacillus subtilis RNase P protein subunits, were functional at low ionic strength. The properties of the archaeal RNase P RNAs (high ionic-strength requirement, low affinity for substrate, and catalytic reconstitution by bacterial RNase P protein) are similar to synthetic RNase P RNAs that contain all of the catalytic core of the bacterial RNA but lack phylogenetically variable, stabilizing elements.  (+info)

Methanobacterium thermoautotrophicum RNA polymerase and transcription in vitro. (6/231)

RNA polymerase (RNAP) purified from Methanobacterium thermoautotrophicum DeltaH has been shown to initiate transcription accurately in vitro from the hmtB archaeal histone promoter with either native or recombinant forms of the M. thermoautotrophicum TATA-binding protein and transcription factor TFB. Efforts to obtain transcription initiation from hydrogen-regulated methane gene promoters were, however, unsuccessful. Two previously unrecognized archaeal RNAP subunits have been identified, and complex formation by the M. thermoautotrophicum RNAP and TFB has been demonstrated.  (+info)

Transcription in archaea. (7/231)

Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.  (+info)

Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. (8/231)

A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3T, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3T stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 x 4.0-6.0 microns) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35 degrees C and pH 7.5 on arginine with a generation time of 16 h. Good growth was obtained on arginine, histidine, threonine and glycine. Acetate was the end-product formed from all these substrates, but in addition, a trace of formate was detected from arginine and histidine, and ornithine was produced from arginine. Strain GLU-3T grew slowly on glutamate and produced acetate, carbon dioxide, formate, hydrogen and traces of propionate as the end-products. In syntrophic association with Methanobacterium formicicum, strain GLU-3T oxidized arginine, histidine and glutamate to give propionate as the major product; acetate, carbon dioxide and methane were also produced. Strain GLU-3T did not degrade alanine and the branched-chain amino acids valine, leucine and isoleucine either in pure culture or in association with M. formicicum. The nearest phylogenetic relative of strain GLU-3T was the thermophile Selenomonas acidaminovorans (similarity value of 89.5%). As strain GLU-3T is phylogenetically, physiologically and genotypically different from other amino-acid-degrading genera, it is proposed that it should be designated a new species of a new genus Aminomonas paucivorans gen. nov., sp. nov. (DSM 12260T).  (+info)