Two pectin lyase genes, pnl-1 and pnl-2, from Colletotrichum gloeosporioides f. sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla. (1/11)

Two pectin lyase genes, designated pnl-1 and pnl-2, were cloned from Colletotrichum gloeosporioides f. sp. malvae, a pathogen of round-leaved mallow (Malva pusilla). pnl-1 was isolated using cDNA from infected plant material; pnl-2 was isolated using cDNA from 3-day-old mycelia grown in mallow-cell-wall extract (MCWE) broth. pnl-1 is the first pectinase gene described thus far to encode a cellulose-binding domain (CBD), which is common in cellulases and xylanases, whereas pnl-2 encodes a pectin lyase that lacks a CBD. In pure culture, pnl-1 expression could be detected when purified pectin or glucose was the sole carbon source, but not when MCWE was the sole carbon source. The lack of pnl-1 expression appeared to be due to gene repression by some unknown factor(s) in the cell-wall extract. In contrast, expression of pnl-2 was detected in cultures when MCWE, but not when purified pectin or glucose, was the sole carbon source. In infected tissue, detection of pnl-1 expression by Northern-blot hybridization and by RT-PCR began with the onset of the necrotrophic phase of infection. Expression ofpnl-2 was not detectable by Northern-blot hybridization, but was observed byRT-PCR in both the biotrophic and necrotrophic phases of infection. The differences between pnl-1 and pnl-2 (i.e. pnl-1 encoding a CBD and differences in the expression patterns of both genes) may be related to the requirements of C. gloeosporioides f. sp. malvae to be able to grow in host tissue under the different conditions present during the biotrophic and necrotrophic phases of infection.  (+info)

Flavonoids from flowers of Malva crispa L. (Malvaceae). (2/11)

The following flavonoids were isolated and identified from the flowers of Malva crispa L.: kaempferol 3-O-beta-glucopyranoside, 3-O-(6"-tran-p-coumaroyl)-beta-D-glucopyranoside, 7-O-beta-D-glucopyranoside, 3-O-alpha-L-rhamnopyranosyl (1-->6)-beta-D-glucopyranoside and 3,7-O-diglucoside as well as quercetin 3-O-beta-D-glucopyranoside, 3-O-alpha-L-rhamnopyranosyl (1-->6) -beta-D-glucopyranoside and apigenin 7-O-beta-D-glucopyranoside. Their structures were established by chemical analysis, UV, 1H and 13C NMR spectrometry.  (+info)

Efficacy of plant extracts against stored-products fungi. (3/11)

The fungistatic activity of six aqueous extracts of plants were tested against Aspergillus candidus, Aspergillus niger, Penicillium sp. and Fusarium culmorum. The plants were, chamomile (Anthemis nobilis L.), cinnamon (Cinnamomum verum J. Presl.), French lavender (Lavandula stoechas L.), garlic (Allium sativum L.), malva (Malva sylvestris L.) and peppermint (Mentha piperita L.). The more concentrated extracts of chamomile and malva inhibited totally the growth of the tested fungi with malva the most effective one.  (+info)

Mutual feedbacks maintain both genetic and species diversity in a plant community. (4/11)

The forces that maintain genetic diversity among individuals and diversity among species are usually studied separately. Nevertheless, diversity at one of these levels may depend on the diversity at the other. We have combined observations of natural populations, quantitative genetics, and field experiments to show that genetic variation in the concentration of an allelopathic secondary compound in Brassica nigra is necessary for the coexistence of B. nigra and its competitor species. In addition, the diversity of competing species was required for the maintenance of genetic variation in the trait within B. nigra. Thus, conservation of species diversity may also necessitate maintenance of the processes that sustain the genetic diversity of each individual species.  (+info)

Determination of the maximum inhibitory dilution of cetylpyridinium chloride-based mouthwashes against Staphylococcus aureus: an in vitro study. (5/11)

 (+info)

Wound healing activity of Malva sylvestris and Punica granatum in alloxan-induced diabetic rats. (6/11)

The flowers of Malva sylvestris Linn. (Malvaceae) and Punica granatum Linn. (Punicaceae) are important medicinal plants in Iranian traditional medicine (Unani) whose have been used as remedy against edema, bum, wound and for their carminative, antimicrobial and anti-inflammatory activities. The diethyl ether extract of M. sylvestris and P. granatum flowers were used to evaluate the wound healing activity at 200 mg/kg/day dose in alloxan-induced diabetic rats. Wounds were induced in Wister rats divided into six groups as following; Group I, normal rats were treated with simple ointment base. Group II, diabetic rats were treated with simple ointment base (control). Groups III and IV, diabetic rats were treated with simple ointment base containing of extracts (diabetic animals), Groups V, diabetic rats were treated with simple ointment base containing of mixed extracts (1:1), Group VI, diabetic rats received the standard drug (nitrofurazone). The efficacy of treatment was evaluated based on wound area relative and histopathological characteristics. The extract-treated diabetic animals showed significant reduction in the wound area when compared with control. Also, histological studies of the tissue obtained on days 9th and 18th from the extract-treated by extract of M. sylvestris showed increased well organized bands of collagen, more fibroblasts and few inflammatory cells. These findings demonstrate that extract of M. sylvestis effectively stimulates wound contraction as compared to control group and other groups. M. sylvestris accelerated wound healing in rats and thus supports its traditional use.  (+info)

The protective effect of Malva sylvestris on rat kidney damaged by vanadium. (7/11)

 (+info)

New steroidal lactones and homomonoterpenic glucoside from fruits of Malva sylvestris L. (8/11)

Phytochemical investigation of the ethanolic extract of defatted fruits of Malva sylvestris Linn. (Malvaceae) led to the isolation of six new steroidal lactones and a homomonoterpenic glucoside along with beta-sitosterol-3-beta-D-glucopyranoside. The structures of new phytoconstituents have been elucidated as cholest-5-en-3a-ol-18(21)-olide (sylvestrosterol A), cholest-9(11)-en-3alpha-ol-18(21)-olide (sylvestrosterol B), cholest-4,6,22-trien-3alpha-ol-18(21)-olide (sylvestrosterol C), 2-methyl-6-methylene-n-decan-2-olyl- 3beta-D-glucopyranoside (malvanoyl glucoside), cholest-7-en-18(21)-olide-3alpha-olyl-3beta-D-glucopyranoside (sylvestrogenin A), cholest-9(11)-en-18(21)-olide-3alpha-olyl-3beta-D-glucopyranoside (sylvestrogenin B) and cholest-5-en-8(21)-olide-3alpha-olyl-3beta-D-glucopyranoside (sylvestrogenin C).The structures of all these phytoconstituents have been established on the basis of spectral data analysis and chemical reactions.  (+info)