Hypoalbuminemia increases lysophosphatidylcholine in low-density lipoprotein of normocholesterolemic subjects. (1/1003)

BACKGROUND: A phospholipid, lysophosphatidylcholine (LPC), is the major determinant of the atherosclerotic properties of oxidized low-density lipoprotein (LDL). Under normal circumstances most LPC is bound to albumin. We hypothesized that lipoprotein LPC concentrations are increased in hypoalbuminemic patients with the nephrotic syndrome, irrespective of their lipid levels. To test this hypothesis, we selected nephrotic and control subjects with matched LDL cholesterol levels. METHODS: Lipoproteins and the albumin-rich lipoprotein-deficient fractions were separated by ultracentrifugation and their phospholipid composition was analyzed by thin-layer chromatography. RESULTS: Nephrotic subjects (albumin 23 +/- 2 g/liter and LDL cholesterol 3.1 +/- 0.2 mmol/liter) had a LDL LPC concentration that was increased (P < 0.05) to 66 +/- 7 vs. 35 +/- 6 micromol/liter in matched controls (albumin 42 +/- 5 g/liter and LDL cholesterol 3.1 +/- 0.2 mmol/liter). LPC in very low-density lipoprotein plus intermediate-density lipoprotein (VLDL + IDL) in these subjects was also increased to 33 +/- 7 vs. 9 +/- 2 micromol/liter in controls (P < 0.05). Conversely, LPC was decreased to 19 +/- 4 micromol/liter in the albumin-containing fraction of these hypoalbuminemic patients, as compared to 46 +/- 10 micromol/liter in the controls (P < 0.05). LPC was also low (14 +/- 4 micromol/liter) in the albumin-containing fraction of hypoalbuminemic, hypocholesterolemic patients with nonrenal diseases. In hyperlipidemic nephrotic subjects (albumin 21 +/- 2 g/liter and LDL cholesterol 5.7 +/- 0.5 mmol/liter) the LPC levels in LDL and VLDL + IDL were further increased, to 95 +/- 20 and 56 +/- 23 micromol/liter, respectively (P < 0.05). CONCLUSION: These findings suggest that in the presence of hypoalbuminemia in combination with proteinuria, LPC shifts from albumin to VLDL, IDL and LDL. This effect is independent of hyperlipidemia. Increased LPC in lipoproteins may be an important factor in the disproportionate increase in cardiovascular disease in nephrotic patients with hypoalbuminemia.  (+info)

Substrate specificity of lysophospholipase D which produces bioactive lysophosphatidic acids in rat plasma. (2/1003)

Previously we reported that lysophospholipase D in rat plasma hydrolyzes endogenous unsaturated lysophosphatidylcholines (LPCs) preferentially to saturated LPCs to lysophosphatidic acids with growth factor-like and hormone-like activities. In this study, we examined the possibility that association of LPCs with different proteins in rat plasma has an effect on the preference of lysophospholipase D for unsaturated LPCs. Large portions of various LPCs were found to be recovered in the lipoprotein-poor bottom fraction. Furthermore, the percentages of LPCs associated with albumin isolated from rat plasma were shown not to be consistent with their percentage conversions to lysophosphatidic acids by lysophospholipase D on incubation of rat plasma at 37 degrees C. These results indicate that distinct distributions of LPCs in the plasma protein fractions are not critical factors for the substrate specificity of lysophospholipase D. Experiments with Nagase analbuminemic rats suggested that albumin-LPC complexes are not necessarily required for the hydrolysis by lysophospholipase D; lipoprotein-associate LPCs appeared to be good substrates for the phospholipase. We found that both saturated and unsaturated LPCs are present mainly as 1-acyl isomers in rat plasma. This result indicates that the preference of lysophospholipase D for unsaturated LPCs is not attributable to a difference in position of the acyl group attached to the glycerol backbone of LPC. In addition, lysophospholipase D was also found to attack choline phospholipids with a long chain group and a short chain alkyl group, although their percentage hydrolyses were low. Taken altogether, these results suggest that lysophospholipase D shows higher affinities for free forms of unsaturated acyl type LPCs equilibrated with albumin-bound and lipoprotein-associated forms, than for free forms of saturated acyl type LPCs and analogs of platelet-activating factor.  (+info)

Protective effect of quinaprilat, an active metabolite of quinapril, on Ca2+-overload induced by lysophosphatidylcholine in isolated rat cardiomyocytes. (3/1003)

We examined the effects of quinaprilat, an active metabolite of quinapril (an angiotensin converting enzyme (ACE) inhibitor) on the increase in intracellular concentration of Ca2+ ([Ca2+]i) (Ca2+-overload) induced by lysophosphatidylcholine (LPC) in isolated rat cardiomyocytes. LPC (15 microM) produced Ca2+-overload with a change in cell-shape from rod to round. Quinaprilat but not quinapril at 20 or 50 microM attenuated the LPC-induced increase in [Ca2+]i and the change in cell-shape in a concentration-dependent manner. Since quinaprilat has an inhibitory action on ACE and quinapril has practically no inhibitory action on ACE, it is likely that the inhibitory action of quinaprilat on ACE is necessary for the protective effect of the drug against LPC-induced changes. We therefore examined the effects of enalapril (another ACE inhibitor with the weak inhibitory action on ACE) and enalaprilat (an active metabolite of enalapril with an inhibitory action on ACE) on the LPC-induced changes. Both enalapril and enalaprilat attenuated the LPC-induced Ca2+-overload, suggesting that the inhibitory action on ACE may not mainly contribute to the protective effect of ACE inhibitors against LPC-induced Ca2+-overload. This suggestion was supported by the fact that neither ACE (0.2 U/ml) nor angiotensin II (0.1-100 microM) increased [Ca2+]i in isolated cardiomyocytes. Furthermore, application of bradykinin (0.01-10 microM) did not enhance the protective effect of quinaprilat against LPC-induced changes. LPC also increased release of creatine kinase (CK) from the myocyte markedly, and quinaprilat but not quinapril attenuated the LPC-induced CK release. Unexpectedly, both enalapril and enalaprilat did not attenuate the LPC-induced CK release. Neither quinapril nor quinaprilat changed the critical micelle concentration of LPC, suggesting that these drugs do not directly bind to LPC. We conclude that quinaprilat attenuates the LPC-induced increase in [Ca2+]i, and that the protective effect of quinaprilat on the LPC-induced change may not be related to a decrease in angiotensin II production or an increase in bradykinin production.  (+info)

Sperm-oviduct interaction: induction of capacitation and preferential binding of uncapacitated spermatozoa to oviductal epithelial cells in porcine species. (4/1003)

After mating, inseminated spermatozoa are transported to the oviduct. They attach to and interact with oviductal epithelial cells (OEC). To investigate sperm-OEC interactions, we used chlortetracycline to study the capacitation status of boar spermatozoa in coculture with homologous OEC and cells of nonreproductive origin (LLC-PK1, porcine kidney epithelial cell line). Boar spermatozoa were cocultured with OEC and LLC-PK1 cells for 15, 60, 120, or 240 min. The proportion of capacitated spermatozoa in coculture with the isthmic and ampullar cells increased significantly (p < 0.05) during incubation. However, most spermatozoa in coculture with LLC-PK1 cells or blank (medium only) remained uncapacitated. In addition, preferential binding of uncapacitated, capacitated, or acrosome-reacted boar spermatozoa to OEC and the other cell type was investigated. Our approach was to vary the proportions of uncapacitated, capacitated, or acrosome-reacted boar spermatozoa in suspension using long preincubation and lysophosphatidylcholine treatment of semen prior to a very short incubation with OEC or LLC-PK1 cells. The results showed that the majority of spermatozoa that were bound to OEC or LLC-PK1 cells were uncapacitated and that a significant relationship existed between the relative proportion of uncapacitated spermatozoa in the control samples and those bound to LLC-PK1 cells (r2 = 0.43, p < 0.005). However, there was no correlation between the proportion of uncapacitated spermatozoa in the control samples and the proportion of those bound to isthmic or ampullar cells. In conclusion, the results clearly demonstrated the specific nature of the sperm-OEC interaction in the porcine species. This interaction is initiated by uncapacitated spermatozoa binding to OEC and is continued by the induction of capacitation in cocultured spermatozoa.  (+info)

Stimulation of collagen galactosyltransferase and glucosyltransferase activities by lysophosphatidylcholine. (5/1003)

Lysophosphatidylcholine stimulated the activities of collagen galactosyl- and glucosyl-transferases in chick-embryo extract and its particulate fractions in vitro, whereas essentially no stimulation was noted in the high-speed supernatant, where the enzymes are soluble and membrane-free. The stimulatory effect of lysophosphatidylcholine was masked by 0.1% Triton X-100. In kinetic experiments lysophosphatidylcholine raised the maximum velocities with respect to the substrates and co-substrates, whereas no changes were observed in the apparant Km values. Phospholipase A preincubation of the chick-embryo extract resulted in stimulation of both transferase activities, probably gy generating lysophosphatides from endogenous phospholipids. No stimulation by lysophosphatidylcholine was found when tested with 500-fold-purified glycosyltransferase. The results suggest that collagen glycosyltransferases must be associated with the membrane structures of the cell in order to be stimulated by lysophosphatidylcholine. Lysophosphatidylcholine could have some regulatory significance in vivo, since its concentration in the cell is comparable with that which produced marked stimulation in vitro.  (+info)

Antibodies to adult human endothelial cells cross-react with oxidized low-density lipoprotein and beta 2-glycoprotein I (beta 2-GPI) in systemic lupus erythematosus. (6/1003)

Cardiovascular manifestations are common in systemic lupus erythematosus (SLE). Oxidized low-density lipoprotein (oxLDL) is implicated in cardiovascular disease, especially atherosclerosis, and cross-reacts with antibodies to cardiolipin (aCL). beta 2-GPI is a plasma protein participating in the coagulating cascade, and is also cofactor for aCL, and some aCL have been shown to be directed against beta 2-GPI and/or complexes between beta 2-GPI and phospholipids. Lysophosphatidylcholine (LPC) is a phospholipid present both in oxLDL and in damaged endothelium, and we recently showed that LPC is involved in the antigenicity of oxLDL. Antibodies to endothelial cells (aEC) correlate with diseases activity in SLE and vasculitis, and we recently showed that aEC are enhanced in cardiovascular disease such as borderline hypertension and early atherosclerosis. aEC were determined using EC from adult V. Saphena Magna. Antibody levels were determined by ELISA. aEC of IgG type were enhanced in 184 patients with SLE compared with 85 healthy controls. There was a close correlation between aoxLDL, aCL, aLPC, a beta 2-GPI and aEC. Binding of sera to EC was competitively inhibited by beta 2-GPI, LPC and oxLDL. Taken together, the data indicate that EC share antigenic epitopes with beta 2-GPI and with oxLDL, especially LPC. Phospholipids in EC membranes may thus be antigenic epitopes. beta 2-GPI may bind to these phospholipids, and become an autoantigen. LPC is formed by oxidation of phospholipids and/or proinflammatory factors leading to activation of phospholipase A2, and the findings indicate the potential role of both lipid oxidation and phospholipase A2 in SLE.  (+info)

A modification of apolipoprotein B accounts for most of the induction of macrophage growth by oxidized low density lipoprotein. (7/1003)

It has recently been shown that macrophage proliferation occurs during the progression of atherosclerotic lesions and that oxidized low density lipoprotein (LDL) stimulates macrophage growth. Possible mechanisms for this include the interaction of oxidized LDL with integral plasma membrane proteins coupled to signaling pathways, the release of growth factors and autocrine activation of growth factor receptors, or the potentiation of mitogenic signal transduction by a component of oxidized LDL after internalization. The present study was undertaken to further elucidate the mechanisms involved in the growth-stimulating effect of oxidized LDL in macrophages. Only extensively oxidized LDL caused significant growth stimulation, whereas mildly oxidized LDL, native LDL, and acetyl LDL were ineffective. LDL that had been methylated before oxidation (to block lysine derivatization by oxidation products and thereby prevent the formation of a scavenger receptor ligand) did not promote growth, even though extensive lipid peroxidation had occurred. The growth stimulation could not be attributed to lysophosphatidylcholine (lyso-PC) because incubation of oxidized LDL with fatty acid-free bovine serum albumin resulted in a 97% decrease in lyso-PC content but only a 20% decrease in mitogenic activity. Similarly, treatment of acetyl LDL with phospholipase A2 converted more than 90% of the initial content of phosphatidylcholine (PC) to lyso-PC, but the phospholipase A2-treated acetyl LDL was nearly 10-fold less potent than oxidized LDL at stimulating growth. Platelet-activating factor receptor antagonists partly inhibited growth stimulation by oxidized LDL, but platelet-activating factor itself did not induce growth. Digestion of oxidized LDL with phospholipase A2 resulted in the hydrolysis of PC and oxidized PC but did not attenuate growth induction. Native LDL, treated with autoxidized arachidonic acid under conditions that caused extensive modification of lysine residues by lipid peroxidation products but did not result in oxidation of LDL lipids, was equal to oxidized LDL in potency at stimulating macrophage growth. Albumin modified by arachidonic acid peroxidation products also stimulated growth, demonstrating that LDL lipids are not essential for this effect. These findings suggest that oxidatively modified apolipoprotein B is the main growth-stimulating component of oxidized LDL, but that oxidized phospholipids may play a secondary role.  (+info)

Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: role of oxidative stress. (8/1003)

BACKGROUND: Atherogenic lipoproteins cause injury to the vascular wall in the early phase of atherogenesis. We assessed the effects of native (nLDL) and oxidized (oxLDL) low-density lipoprotein (LDL) and lipoprotein (a) [Lp(a)] on O2- formation and cell death in cultured human umbilical vein endothelial cells (HUVECs) and rabbit aorta (RA). METHODS AND RESULTS: O2- formation of HUVECs and RA segments was not influenced by nLDL, but was dose dependently increased by oxLDL and was moderately increased by nLp(a). oxLp(a) was the most potent stimulus for O2- formation, increasing it in HUVECs by 356% at 5 micrograms/ml and in RA by 294% at 100 micrograms/ml. Apoptosis was detected by DNA fragmentation and Annexin assay in HUVECs and by TUNEL staining in RA. Incubation of HUVECs and RA with oxLDL, but not nLDL, dose and time dependently induced apoptosis with only a minimal effect on necrosis. nLp(a) elicited a small but significant effect on apoptosis, whereas oxLp(a) induced apoptosis more potently than oxLDL in HUVECs and RA and caused necrotic cell death in HUVECs. Induction of apoptosis by oxLDL and oxLp(a) in RA was enhanced by the superoxide dismutase (SOD) inhibitor, diethyl-dithio-carbamate, and was blunted by SOD and catalase in HUVECs and RA, suggesting that O2- formation was involved. The concentration of lysophosphatidylcholine, a lipoprotein oxidation product and stimulus for O2- formation, was significantly enhanced by factor 5 in oxLDL and by factor 7 in oxLp(a) compared with native lipoproteins. CONCLUSION: Atherogenic lipoproteins stimulate O2- formation and induction of apoptosis in HUVECs and RA, and may thereby influence the pathogenesis of atherosclerosis.  (+info)