Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. (1/20671)

We have generated mice with a cell type-specific disruption of the Stat3 gene in macrophages and neutrophils. The mutant mice are highly susceptible to endotoxin shock with increased production of inflammatory cytokines such as TNF alpha, IL-1, IFN gamma, and IL-6. Endotoxin-induced production of inflammatory cytokines is augmented because the suppressive effects of IL-10 on inflammatory cytokine production from macrophages and neutrophils are completely abolished. The mice show a polarized immune response toward the Th1 type and develop chronic enterocolitis with age. Taken together, Stat3 plays a critical role in deactivation of macrophages and neutrophils mainly exerted by IL-10.  (+info)

Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. (2/20671)

An interleukin-18 binding protein (IL-18BP) was purified from urine by chromatography on IL-18 beads, sequenced, cloned, and expressed in COS7 cells. IL-18BP abolished IL-18 induction of interferon-gamma (IFNgamma), IL-8, and activation of NF-kappaB in vitro. Administration of IL-18BP to mice abrogated circulating IFNgamma following LPS. Thus, IL-18BP functions as an inhibitor of the early Th1 cytokine response. IL-18BP is constitutively expressed in the spleen, belongs to the immunoglobulin superfamily, and has limited homology to the IL-1 type II receptor. Its gene was localized on human chromosome 11q13, and no exon coding for a transmembrane domain was found in an 8.3 kb genomic sequence. Several Poxviruses encode putative proteins highly homologous to IL-18BP, suggesting that viral products may attenuate IL-18 and interfere with the cytotoxic T cell response.  (+info)

Salmonella typhimurium and lipopolysaccharide stimulate extracellularly regulated kinase activation in macrophages by a mechanism involving phosphatidylinositol 3-kinase and phospholipase D as novel intermediates. (3/20671)

Activation of the extracellularly regulated kinase (ERK) pathway is part of the early biochemical events that follow lipopolysaccharide (LPS) treatment of macrophages or their infection by virulent and attenuated Salmonella strains. Phagocytosis as well as the secretion of invasion-associated proteins is dispensable for ERK activation by the pathogen. Furthermore, the pathways used by Salmonella and LPS to stimulate ERK are identical, suggesting that kinase activation might be solely mediated by LPS. Both stimuli activate ERK by a mechanism involving herbimycin-dependent tyrosine kinase(s) and phosphatidylinositol 3-kinase. Phospholipase D activation and stimulation of protein kinase C appear to be intermediates in this novel pathway of MEK/ERK activation.  (+info)

Role of nitric oxide in lipopolysaccharide-induced hepatic injury in D-galactosamine-sensitized mice as an experimental endotoxic shock model. (4/20671)

The role of nitric oxide (NO) in lipopolysaccharide (LPS)-induced hepatic injury was studied in D-galactosamine (D-GalN)-sensitized mice. The inducible isoform of NO synthase (iNOS) was immunohistochemically detected on hepatocytes around blood vessels in livers of mice injected with D-GalN and LPS not on hepatocytes in mice injected with D-GalN or LPS alone, although mRNA for iNOS was found in those mice. Nitrotyrosine (NT) was also found in livers of mice injected with D-GalN and LPS. The localization of NT was consistent with that of iNOS, and the time courses of NT and iNOS expression were almost the same. Expression of iNOS and NT was detected exclusively in the hepatic lesions of mice injected with D-GalN and LPS. Anti-tumor necrosis factor alpha neutralizing antibody inhibited iNOS and NT expression and hepatic injury. The results suggested that NO from iNOS may play a role in LPS-induced hepatic injury on D-GalN-sensitized mice as an experimental endotoxic shock model.  (+info)

Activation of murine macrophages by lipoprotein and lipooligosaccharide of Treponema denticola. (5/20671)

We have recently demonstrated that the periodontopathogenic oral spirochete Treponema denticola possesses membrane-associated lipoproteins in addition to lipooligosaccharide (LOS). The aim of the present study was to test the potential of these oral spirochetal components to induce the production of inflammatory mediators by human macrophages, which in turn may stimulate tissue breakdown as observed in periodontal diseases. An enriched lipoprotein fraction (dLPP) from T. denticola ATCC 35404 obtained upon extraction of the treponemes with Triton X-114 was found to stimulate the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), and interleukin-1 (IL-1) by mouse macrophages in a dose-dependent manner. Induction of NO by dLPP was at 25% of the levels obtained by Salmonella typhosa lipopolysaccharide (LPS) at similar concentrations, while IL-1 was produced at similar levels by both inducers. dLPP-mediated macrophage activation was unaffected by amounts of polymyxin B that neutralized the induction produced by S. typhosa LPS. dLPP also induced NO and TNF-alpha secretion from macrophages isolated from endotoxin-unresponsive C3H/HeJ mice to an extent similar to the stimulation produced in endotoxin-responsive mice. Purified T. denticola LOS also produced a concentration-dependent activation of NO and TNF-alpha in LPS-responsive and -nonresponsive mouse macrophages. However, macrophage activation by LOS was inhibited by polymyxin B. These results suggest that T. denticola lipoproteins and LOS may play a role in the inflammatory processes that characterize periodontal diseases.  (+info)

Potent immunoregulatory effects of Salmonella typhi flagella on antigenic stimulation of human peripheral blood mononuclear cells. (6/20671)

A key function of monocytes/macrophages (Mphi) is to present antigens to T cells. However, upon interaction with bacteria, Mphi lose their ability to effectively present soluble antigens. This functional loss was associated with alterations in the expression of adhesion molecules and CD14 and a reduction in the uptake of soluble antigen. Recently, we have demonstrated that Salmonella typhi flagella (STF) markedly decrease CD14 expression and are potent inducers of proinflammatory cytokine production by human peripheral blood mononuclear cells (hPBMC). In order to determine whether S. typhi and soluble STF also alter the ability of Mphi to activate T cells to proliferate to antigens and mitogens, hPBMC were cultured in the presence of tetanus toxoid (TT) or phytohemagglutinin (PHA) and either killed whole-cell S. typhi or purified STF protein. Both whole-cell S. typhi and STF suppressed proliferation to PHA and TT. This decreased proliferation was not a result of increased Mphi production of nitric oxide, prostaglandin E2, or oxygen radicals or the release of interleukin-1beta, tumor necrosis factor alpha, interleukin-6, or interleukin-10 following exposure to STF. However, the ability to take up soluble antigen, as determined by fluorescein isothiocyanate-labeled dextran uptake, was reduced in cells cultured with STF. Moreover, there was a dramatic reduction in the expression of CD54 on Mphi after exposure to STF. These results indicate that whole-cell S. typhi and STF have the ability to alter in vitro proliferation to soluble antigens and mitogens by affecting Mphi function.  (+info)

Neutralization of endotoxin in vitro and in vivo by a human lactoferrin-derived peptide. (7/20671)

Endotoxin (lipopolysaccharide [LPS]) is the major pathogenic factor of gram-negative septic shock, and endotoxin-induced death is associated with the host overproduction of tumor necrosis factor alpha (TNF-alpha). In the search for new antiendotoxin molecules, we studied the endotoxin-neutralizing capacity of a human lactoferrin-derived 33-mer synthetic peptide (GRRRRSVQWCAVSQPEATKCFQWQRNMRKVRGP; designated LF-33) representing the minimal sequence for lactoferrin binding to glycosaminoglycans. LF-33 inhibited the coagulation of the Limulus amebocyte lysate and the secretion of TNF-alpha by RAW 264.7 cells induced by lipid A and four different endotoxins with a potency comparable to that of polymyxin B. The first six residues at the N terminus of LF-33 were critical for its antiendotoxin activity. The endotoxin-neutralizing capacity of LF-33 and polymyxin B was attenuated by human serum. Coinjection of Escherichia coli LPS (125 ng) with LF-33 (2.5 microg) dramatically reduced the lethality of LPS in the galactosamine-sensitized mouse model. Significant protection of the mice against the lethal LPS challenge was also observed when LF-33 (100 microg) was given intravenously after intraperitoneal injection of LPS. Protection was correlated with a reduction in TNF-alpha levels in the mouse serum. These results demonstrate the endotoxin-neutralizing capability of LF-33 in vitro and in vivo and its potential use for the treatment of endotoxin-induced septic shock.  (+info)

Relationship between UDP-glucose 4-epimerase activity and oligoglucose glycoforms in two strains of Neisseria meningitidis. (8/20671)

Sodium dodecyl sulfate-polyacrylamide gel analysis of lipooligosaccharide (LOS) from Neisseria meningitidis has demonstrated considerable microheterogeneity in the variable region of LOS due to the presence of novel glycoforms. As a step toward understanding the basis for the expression of these novel glycoforms, we have examined the LOS structures and UDP-glucose 4-epimerase (epimerase) activity levels in two strains (NMB and MA-1) and their respective galE mutants. Strain NMB was found to have low epimerase activity and to contain multiple glycoforms, some of which appear to contain only glucose sugars. The galE mutant had only the oligoglucose glycoforms. Strain MA-1 had higher epimerase activity at both log and stationary phases (2- and 12.5-fold, respectively) and one glycoform with a putative lactosyl structure. Strain MA-1 galE had two glycoforms that contained one or two glucose residues. To understand the molecular basis for the different epimerase activities, we examined the predicted amino acid sequences of the respective galE open reading frames and determined the relative amounts of GalE protein. We found no significant differences between the predicted amino acid sequence of the GalE protein in NMB and that in MA-1. We observed no significant differences in the level of GalE protein between MA-1 and NMB at exponential or stationary phase. We also observed an 8.2-fold drop in epimerase activity in NMB between the log and stationary phases that was not due to the GalE protein level or low glucose levels.  (+info)