Loading...
(1/1632) Tumor necrosis factor alpha stimulates lipolysis in adipocytes by decreasing Gi protein concentrations.

Prolonged treatment (12-24 h) of adipocytes with tumor necrosis factor alpha (TNFalpha) stimulates lipolysis. We have investigated the hypothesis that TNFalpha stimulates lipolysis by blocking the action of endogenous adenosine. Adipocytes were incubated for 48 h with TNFalpha, and lipolysis was measured in the absence or presence of adenosine deaminase. Without adenosine deaminase, the rate of glycerol release was 2-3-fold higher in the TNFalpha-treated cells, but with adenosine deaminase lipolysis increased in the controls to approximately that in the TNFalpha-treated cells. This suggests that TNFalpha blocks adenosine release or prevents its antilipolytic effect. Both N6-phenylisopropyl adenosine and nicotinic acid were less potent and efficacious inhibitors of lipolysis in treated cells. A decrease in the concentration of alpha-subunits of all three Gi subtypes was detected by Western blotting without a change in Gs proteins or beta-subunits. Gi2alpha was about 50% of control, whereas Gi1alpha and Gi3alpha were about 20 and 40% of control values, respectively. The time course of Gi down-regulation correlated with the stimulation of lipolysis. Furthermore, down-regulation of Gi by an alternative approach (prolonged incubation with N6-phenylisopropyl adenosine) stimulated lipolysis. These findings indicate that TNFalpha stimulates lipolysis by blunting endogenous inhibition of lipolysis. The mechanism appears to be a Gi protein down-regulation.  (+info)

(2/1632) AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target.

AMP-activated kinase (AMPK) is activated in response to metabolic stresses that deplete cellular ATP, and in both liver and skeletal muscle, activated AMPK stimulates fatty acid oxidation. To determine whether AMPK might reciprocally regulate glycerolipid synthesis, we studied liver and skeletal-muscle lipid metabolism in the presence of 5-amino-4-imidazolecarboxamide (AICA) riboside, a cell-permeable compound whose phosphorylated metabolite activates AMPK. Adding AICA riboside to cultured rat hepatocytes for 3 h decreased [14C]oleate and [3H]glycerol incorporation into triacylglycerol (TAG) by 50% and 38% respectively, and decreased oleate labelling of diacylglycerol by 60%. In isolated mouse soleus, a highly oxidative muscle, incubation with AICA riboside for 90 min decreased [14C]oleate incorporation into TAG by 37% and increased 14CO2 production by 48%. When insulin was present, [14C]oleate oxidation was 49% lower and [14C]oleate incorporation into TAG was 62% higher than under basal conditions. AICA riboside blocked insulin's antioxidative and lipogenic effects, increasing fatty acid oxidation by 78% and decreasing labelled TAG 43%. Similar results on fatty acid oxidation and acylglycerol synthesis were observed in C2C12 myoblasts, and in differentiated C2C12 myotubes, AICA riboside also inhibited the hydrolysis of intracellular TAG. These data suggest that AICA riboside might inhibit sn-glycerol-3-phosphate acyltransferase (GPAT), which catalyses the committed step in the pathway of glycerolipid biosynthesis. Incubating rat hepatocytes with AICA riboside for both 15 and 30 min decreased mitochondrial GPAT activity 22-34% without affecting microsomal GPAT, diacylglycerol acyltransferase or acyl-CoA synthetase activities. Finally, purified recombinant AMPKalpha1 and AMPKalpha2 inhibited hepatic mitochondrial GPAT in a time-and ATP-dependent manner. These data show that AMPK reciprocally regulates acyl-CoA channelling towards beta-oxidation and away from glycerolipid biosynthesis, and provide strong evidence that AMPK phosphorylates and inhibits mitochondrial GPAT.  (+info)

(3/1632) Calcium and cAMP are second messengers in the adipokinetic hormone-induced lipolysis of triacylglycerols in Manduca sexta fat body.

We have previously shown that stereospecific hydrolysis of stored triacylglycerol by a phosphorylatable triacylglycerol-lipase is the pathway for the adipokinetic hormone-stimulated synthesis of sn -1, 2-diacylglycerol in insect fat body. The current series of experiments were designed to determine whether cAMP and/or calcium are involved in the signal transduction pathway for adipokinetic hormone in the fat body. After adipokinetic hormone treatment, cAMP-dependent protein kinase activity in the fat body rapidly increased and reached a maximum after 20 min, suggesting that adipokinetic hormone causes an increase in cAMP. Forskolin (0.1 micrometer), an adenylate cyclase activator, induced up to a 97% increase in the secretion of diacylglycerol from the fat body. 8Br-cAMP (a membrane-permeable analog of cAMP) produced a 40% increase in the hemolymph diacylglycerol content. Treatment with cholera toxin, which also stimulates adenylate cyclase, induced up to a 145% increase in diacylglycerol production. Chelation of extracellular calcium produced up to 70% inhibition of the adipokinetic hormone-dependent mobilization of lipids. Calcium-mobilizing agents, ionomycin and thapsigargin, greatly stimulated DG production by up to 130%. Finally, adipokinetic hormone caused a rapid increase of calcium uptake into the fat body. Our findings indicate that the action of adipokinetic hormone in mobilizing lipids from the insect fat body involves both cAMP and calcium as intracellular messengers.  (+info)

(4/1632) Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release.

We have previously shown that nitric oxide (NO) stimulates apoptosis in different human neoplastic lymphoid cell lines through activation of caspases not only via CD95/CD95L interaction, but also independently of such death receptors. Here we investigated mitochondria-dependent mechanisms of NO-induced apoptosis in Jurkat leukemic cells. NO donor glycerol trinitrate (at the concentration, which induces apoptotic cell death) caused (1) a significant decrease in the concentration of cardiolipin, a major mitochondrial lipid; (2) a downregulation in respiratory chain complex activities; (3) a release of the mitochondrial protein cytochrome c into the cytosol; and (4) an activation of caspase-9 and caspase-3. These changes were accompanied by an increase in the number of cells with low mitochondrial transmembrane potential and with a high level of reactive oxygen species production. Higher resistance of the CD95-resistant Jurkat subclone (APO-R) cells to NO-mediated apoptosis correlated with the absence of cytochrome c release and with less alterations in other mitochondrial parameters. An inhibitor of lipid peroxidation, trolox, significantly suppressed NO-mediated apoptosis in APO-S Jurkat cells, whereas bongkrekic acid (BA), which blocks mitochondrial permeability transition, provided only a moderate antiapoptotic effect. Transfection of Jurkat cells with bcl-2 led to a complete block of apoptosis due to the prevention of changes in mitochondrial functions. We suggest that the mitochondrial damage (in particular, cardiolipin degradation and cytochrome c release) induced by NO in human leukemia cells plays a crucial role in the subsequent activation of caspase and apoptosis.  (+info)

(5/1632) Mechanisms of inhibition of lipolysis by insulin, vanadate and peroxovanadate in rat adipocytes.

Vanadate and peroxovanadate (pV), potent inhibitors of tyrosine phosphatases, mimic several of the metabolic actions of insulin. Here we compare the mechanisms for the anti-lipolytic action of insulin, vanadate and pV in rat adipocytes. Vanadate (5 mM) and pV (0.01 mM) inhibited lipolysis induced by 0.01-1 microM isoprenaline, vanadate being more and pV less efficient than insulin (1 nM). A loss of anti-lipolytic effect of pV was observed by increasing the concentration of isoprenaline and/or pV. pV induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 to a greater extent than insulin, whereas vanadate affected these components little if at all. In addition, only a higher concentration (0.1 mM) of pV induced the tyrosine phosphorylation of p85, the 85 kDa regulatory subunit of phosphoinositide 3-kinase (PI-3K). Vanadate activated PI-3K-independent (in the presence of 10 nM isoprenaline) and PI-3K-dependent (in the presence of 100 nM isoprenaline) anti-lipolytic pathways, both of which were found to be independent of phosphodiesterase type 3B (PDE3B). pV (0.01 mM), like insulin, activated PI-3K- and PDE3B-dependent pathways. However, the anti-lipolytic pathway of 0.1 mM pV did not seem to require insulin receptor substrate-1-associated PI-3K and was found to be partly independent of PDE3B. Vanadate and pV (only at 0.01 mM), like insulin, decreased the isoprenaline-induced activation of cAMP-dependent protein kinase. Overall, these results underline the complexity and the diversity in the mechanisms that regulate lipolysis.  (+info)

(6/1632) Effects of a high-fat diet and voluntary wheel running on gluconeogenesis and lipolysis in rats.

The purpose of the present study was to determine the effects of diet composition and exercise on glycerol and glucose appearance rate (Ra) and on nonglycerol gluconeogenesis (Gneo) in vivo. Male Wistar rats were fed a high-starch diet (St, 68% of energy as cornstarch, 12% corn oil) for a 2-wk baseline period and then were randomly assigned to one of four experimental groups: St (n = 7), high-fat (HF; 35% cornstarch, 45% corn oil; n = 8), St with free access to exercise wheels (StEx; n = 7), and HF with free access to exercise wheels (HFEx; n = 7). After 8 wk, glucose Ra when using [3-3H]glucose, glycerol Ra when using [2H5]glycerol (estimate of whole body lipolysis), and [3-13C]alanine incorporation into glucose (estimate of alanine Gneo) were determined. Body weight and fat pad mass were significantly (P < 0.05) decreased in exercise vs. sedentary animals only. The average amount of exercise was not significantly different between StEx (3,212 +/- 659 m/day) and HFEx (3,581 +/- 765 m/day). The ratio of glucose to alanine enrichment and absolute glycerol Ra (micromol/min) were higher (P < 0.05) in HF and HFEx compared with St and StEx rats. In separate experiments, the ratio of 3H in C-2 to C-6 of glucose from 3H2O (estimate of Gneo from pyruvate) was also higher (P < 0.05) in HF (n = 5) and HFEx (n = 5), compared with St (n = 5) and StEx (n = 5) rats. Voluntary wheel running did not significantly increase estimated alanine or pyruvate Gneo or absolute glycerol Ra. Voluntary wheel running increased (P < 0.05) glycerol Ra when normalized to fat pad mass. These data suggest that a high-fat diet can increase in vivo Gneo from precursors that pass through pyruvate. They also suggest that changes in the absolute rate of glycerol Ra may contribute to the high-fat diet-induced increase in Gneo.  (+info)

(7/1632) The beta3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism.

Promiscuous coupling between G protein-coupled receptors and multiple species of heterotrimeric G proteins provides a potential mechanism for expanding the diversity of G protein-coupled receptor signaling. We have examined the mechanism and functional consequences of dual Gs/Gi protein coupling of the beta3-adrenergic receptor (beta3AR) in 3T3-F442A adipocytes. The beta3AR selective agonist disodium (R, R)-5-[2[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1, 3-benzodioxole-2,2-dicarboxylate (CL316,243) stimulated a dose-dependent increase in cAMP production in adipocyte plasma membrane preparations, and pretreatment of cells with pertussis toxin resulted in a further 2-fold increase in cAMP production by CL316,243. CL316,243 (5 microM) stimulated the incorporation of 8-azido-[32P]GTP into Galphas (1.57 +/- 0.12; n = 3) and Galphai (1. 68 +/- 0.13; n = 4) in adipocyte plasma membranes, directly demonstrating that beta3AR stimulation results in Gi-GTP exchange. The beta3AR-stimulated increase in 8-azido-[32P]GTP labeling of Galphai was equivalent to that obtained with the A1-adenosine receptor agonist N6-cyclopentyladenosine (1.56 +/- 0.07; n = 4), whereas inclusion of unlabeled GTP (100 microM) eliminated all binding. Stimulation of the beta3AR in 3T3-F442A adipocytes led to a 2-3-fold activation of mitogen-activated protein (MAP) kinase, as measured by extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation. Pretreatment of cells with pertussis toxin (PTX) eliminated MAP kinase activation by beta3AR, demonstrating that this response required receptor coupling to Gi. Expression of the human beta3AR in HEK-293 cells reconstituted the PTX-sensitive stimulation of MAP kinase, demonstrating that this phenomenon is not exclusive to adipocytes or to the rodent beta3AR. ERK1/2 activation by the beta3AR was insensitive to the cAMP-dependent protein kinase inhibitor H-89 but was abolished by genistein and AG1478. These data indicate that constitutive beta3AR coupling to Gi proteins serves both to restrain Gs-mediated activation of adenylyl cyclase and to initiate additional signal transduction pathways, including the ERK1/2 MAP kinase cascade.  (+info)

(8/1632) Evidence for a new pathophysiological mechanism for coronary artery disease regression: hepatic lipase-mediated changes in LDL density.

BACKGROUND: Small, dense LDL particles are associated with coronary artery disease (CAD) and predict angiographic changes in response to lipid-lowering therapy. Intensive lipid-lowering therapy in the Familial Atherosclerosis Treatment Study (FATS) resulted in significant improvement in CAD. This study examines the relationship among LDL density, hepatic lipase (HL), and CAD progression, identifying a new biological mechanism for the favorable effects of lipid-altering therapy. METHODS AND RESULTS: Eighty-eight of the subjects in FATS with documented coronary disease, apolipoprotein B levels >/=125 mg/dL, and family history of CAD were selected for this study. They were randomly assigned to receive lovastatin (40 mg/d) and colestipol (30 g/d), niacin (4 g/d) and colestipol, or conventional therapy with placebo alone or with colestipol in those with elevated LDL cholesterol levels. Plasma hepatic lipase (HL), lipoprotein lipase, and LDL density were measured when subjects were and were not receiving lipid-lowering therapy. LDL buoyancy increased with lovastatin-colestipol therapy (7.7%; P<0.01) and niacin-colestipol therapy (10.3%; P<0.01), whereas HL decreased in both groups (-14% [P<0.01] and -17% [P<0.01] with lovastatin-colestipol and niacin-colestipol, respectively). Changes in LDL buoyancy and HL activity were associated with changes in disease severity (P<0.001). In a multivariate analysis, an increase in LDL buoyancy was most strongly associated with CAD regression, accounting for 37% of the variance of change in coronary stenosis (P<0.01), followed by reduction in apolipoprotein Bl (5% of variance; P<0.05). CONCLUSIONS: These studies support the hypothesis that therapy-associated changes in HL alter LDL density, which favorably influences CAD progression. This is a new and potentially clinically relevant mechanism linking lipid-altering therapy to CAD improvement.  (+info)