Structure of CD94 reveals a novel C-type lectin fold: implications for the NK cell-associated CD94/NKG2 receptors. (1/3925)

The crystal structure of the extracellular domain of CD94, a component of the CD94/NKG2 NK cell receptor, has been determined to 2.6 A resolution, revealing a unique variation of the C-type lectin fold. In this variation, the second alpha helix, corresponding to residues 102-112, is replaced by a loop, the putative carbohydrate-binding site is significantly altered, and the Ca2+-binding site appears nonfunctional. This structure may serve as a prototype for other NK cell receptors such as Ly-49, NKR-P1, and CD69. The CD94 dimer observed in the crystal has an extensive hydrophobic interface that stabilizes the loop conformation of residues 102-112. The formation of this dimer reveals a putative ligand-binding region for HLA-E and suggests how NKG2 interacts with CD94.  (+info)

Association of the aggrecan keratan sulfate-rich region with collagen in bovine articular cartilage. (2/3925)

Aggrecan, the predominant large proteoglycan of cartilage, is a multidomain macromolecule with each domain contributing specific functional properties. One of the domains contains the majority of the keratan sulfate (KS) chain substituents and a protein segment with a proline-rich hexapeptide repeat sequence. The function of this domain is unknown but the primary structure suggests a potential for binding to collagen fibrils. We have examined binding of aggrecan fragments encompassing the KS-rich region in a solid-phase assay. A moderate affinity (apparent Kd = 1.1 microM) for isolated collagen II, as well as collagen I, was demonstrated. Enzymatic digestion of the KS chains did not alter the capacity of the peptide to bind to collagen, whereas cleavage of the protein core abolished the interaction. The distribution of the aggrecan KS-rich region in bovine tarsometatarsal joint cartilage was investigated using immunoelectron microscopy. Immunoreactivity was relatively low in the superficial zone and higher in the intermediate and deep zones of the uncalcified cartilage. Within the pericellular and territorial matrix compartments the epitopes representing the aggrecan KS-rich region were detected preferentially near or at collagen fibrils. Along the fibrils, epitope reactivity was non-randomly distributed, showing preference for the gap region within the D-period. Our data suggest that collagen fibrils interact with the KS-rich regions of several aggrecan monomers aligned within a proteoglycan aggregate. The fibril could therefore serve as a backbone in at least some of the aggrecan complexes.  (+info)

The leukocyte Ig-like receptor (LIR)-1 for the cytomegalovirus UL18 protein displays a broad specificity for different HLA class I alleles: analysis of LIR-1 + NK cell clones. (3/3925)

Leukocyte Ig-like receptor (LIR)-1 is a member of the Ig superfamily which has been shown to bind the human cytomegalovirus MHC class I homologue UL-18 protein. In this study, we have analyzed the expression and function of LIR-1 in human NK cells. We show that LIR-1 is expressed by a subset of NK cells variable in size among different donors. When compared to the known HLA class I-specific NK receptors, the expression of LIR-1 was found to be partially overlapped with that of CD94-NKG2A or with that of killer inhibitory receptors (KIR) belonging to the Ig superfamily. The use of the soluble form of UL-18 molecule revealed, in double fluorescence analysis, a selective binding to LIR-1 + cells while no correlation was observed between expression of either KIR or CD94-NKG2A molecules and ability to bind UL18. We further determined whether LIR-1 could also function as receptor for HLA class I molecules. To this end, we assessed the capability of LIR-1 + NK cell clones of lysing HLA class I- target cells transfected with different class I alleles, including HLA-A, -B, -C and -G alleles. Data revealed that LIR-1 functions as a broad HLA class I-specific inhibitory receptor recognizing different alleles coded for by different HLA loci.  (+info)

Resistance of CD7-deficient mice to lipopolysaccharide-induced shock syndromes. (4/3925)

CD7 is an immunoglobulin superfamily molecule involved in T and natural killer (NK) cell activation and cytokine production. CD7-deficient animals develop normally but have antigen-specific defects in interferon (IFN)-gamma production and CD8(+) CTL generation. To determine the in vivo role of CD7 in systems dependent on IFN-gamma, the response of CD7-deficient mice to lipopolysaccharide (LPS)-induced shock syndromes was studied. In the high-dose LPS-induced shock model, 67% of CD7-deficient mice survived LPS injection, whereas 19% of control C57BL/6 mice survived LPS challenge (P < 0.001). CD7-deficient or C57BL/6 control mice were next injected with low-dose LPS (1 microgram plus 8 mg D-galactosamine [D-gal] per mouse) and monitored for survival. All CD7-deficient mice were alive 72 h after injection of LPS compared with 20% of C57BL/6 control mice (P < 0.001). After injection of LPS and D-gal, CD7-deficient mice had decreased serum IFN-gamma and tumor necrosis factor (TNF)-alpha levels compared with control C57BL/6 mice (P < 0.001). Steady-state mRNA levels for IFN-gamma and TNF-alpha in liver tissue were also significantly decreased in CD7-deficient mice compared with controls (P < 0.05). In contrast, CD7-deficient animals had normal liver interleukin (IL)-12, IL-18, and interleukin 1 converting enzyme (ICE) mRNA levels, and CD7-deficient splenocytes had normal IFN-gamma responses when stimulated with IL-12 and IL-18 in vitro. NK1.1(+)/ CD3(+) T cells are known to be key effector cells in the pathogenesis of toxic shock. Phenotypic analysis of liver mononuclear cells revealed that CD7-deficient mice had fewer numbers of liver NK1.1(+)/CD3(+) T cells (1.5 +/- 0.3 x 10(5)) versus C57BL/6 control mice (3.7 +/- 0.8 x 10(5); P < 0.05), whereas numbers of liver NK1.1(+)/CD3(-) NK cells were not different from controls. Thus, targeted disruption of CD7 leads to a selective deficiency of liver NK1.1(+)/ CD3(+) T cells, and is associated with resistance to LPS shock. These data suggest that CD7 is a key molecule in the inflammatory response leading to LPS-induced shock.  (+info)

Fatty acids modulate the composition of extracellular matrix in cultured human arterial smooth muscle cells by altering the expression of genes for proteoglycan core proteins. (5/3925)

In diabetes-associated microangiopathies and atherosclerosis, there are alterations of the extracellular matrix (ECM) in the intima of small and large arteries. High levels of circulating nonesterified fatty acids (NEFAs) are present in insulin resistance and type 2 diabetes. High concentrations of NEFAs might alter the basement membrane composition of endothelial cells. In arteries, smooth muscle cells (SMCs) are the major producers of proteoglycans and glycoproteins in the intima, and this is the site of lipoprotein deposition and modification, key events in atherogenesis. We found that exposure of human arterial SMCs to 100-300 micromol/albumin-bound linoleic acid lowered their proliferation rate and altered cell morphology. SMCs expressed 2-10 times more mRNA for the core proteins of the proteoglycans versican, decorin, and syndecan 4 compared with control cells. There was no change in expression of fibronectin and perlecan. The decorin glycosaminoglycan chains increased in size after exposure to linoleic acid. The ECM produced by cells grown in the presence of linoleic acid bound 125I-labeled LDL more tightly than that of control cells. Darglitazone, a peroxisome proliferator-activated receptor (PPAR)-gamma ligand, neutralized the NEFA-mediated induction of the decorin gene. This suggests that some of the NEFA effects are mediated by PPAR-gamma. These actions of NEFAs, if present in vivo, could contribute to changes of the matrix of the arterial intima associated with micro- and macroangiopathies.  (+info)

PU.1 and USF are required for macrophage-specific mannose receptor promoter activity. (6/3925)

In the current study we report the isolation of 854 base pairs of the rat mannose receptor promoter. Analysis of the sequence revealed one Sp1 site, three PU.1 sites, and a potential TATA box (TTTAAA) 33 base pairs 5' of the transcriptional start site. The tissue specificity of the promoter was determined using transient transfections. The promoter was most active in the mature macrophage cell line NR8383 although the promoter also showed activity in the monocytic cell line RAW. No activity was observed in pre-monocytic cell lines or epithelial cell lines. Mutation of the TTTAAA sequence to TTGGAA resulted in a 50% decrease in activity in transient transfection assays suggesting that the promoter contains a functional TATA box. Using electrophoretic mobility shift assays and mutagenesis we established that the transcription factors Sp1, PU.1, and USF bound to the mannose receptor promoter, but only PU.1 and USF contributed to activation. Transient transfections using a dominant negative construct of USF resulted in a 50% decrease in mannose receptor promoter activity, further establishing the role of USF in activating the rat mannose receptor promoter. Comparison of the rat, mouse, and human sequence demonstrated that some binding sites are not conserved. Gel shifts were performed to investigate differences in protein binding between species. USF bound to the rat and human promoter but not to the mouse promoter, suggesting that different mechanisms are involved in regulation of mannose receptor expression in these species. From these results we conclude that, similar to other myeloid promoters, transcription of the rat mannose receptor is regulated by binding of PU.1 and a ubiquitous factor at an adjacent site. However, unlike other myeloid promoters, we have identified USF as the ubiquitous factor, and demonstrated that the promoter contains a functional TATA box.  (+info)

Immune responses to cartilage link protein and the G1 domain of proteoglycan aggrecan in patients with osteoarthritis. (7/3925)

OBJECTIVE: To determine whether patients with osteoarthritis (OA) express cellular immunity to cartilage link protein (LP) and the G1 globular domain of proteoglycan (PG) aggrecan, and whether immunity to the G1 domain is influenced by the removal of keratan sulfate (KS). METHODS: LP and the G1 globular domain of PG were isolated from human and/or bovine cartilage and used in proliferation assays with peripheral blood lymphocytes (PBL) from 42 patients with OA and 40 healthy control subjects. RESULTS: Patients with OA expressed a higher prevalence of cellular immunity to human cartilage LP (42.4%) compared with the control group (13.3%). The prevalence of immune reactivity to bovine LP in patients with OA was lower (35.7%) compared with the immunity to human LP, but remained similar in the control group (13.8%). PBL from patients with OA exhibited low reactivity to the native G1 domain of bovine PG. However, removal of KS chains from the G1 globular domain resulted in increased cellular immune responses to the G1 domain in OA patients (45.8%) compared with the control group (7.7%). CONCLUSION: These results indicate the presence of immunity to cartilage-derived LP and the G1 globular domain of PG aggrecan in patients with OA and the inhibitory effect of KS chains on the G1 domain on the expression of this immunity in OA patients. This immune reactivity is commonly observed in patients with inflammatory joint disease and can experimentally induce arthritis. Thus, it may be involved in the pathogenesis of OA.  (+info)

Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. (8/3925)

OBJECTIVE: To determine the concentrations of aggrecan fragments in synovial fluid from patients with knee joint injury, osteoarthritis (OA), or acute pyrophosphate arthritis (PPA; pseudogout), and to test their relative reactivity with the 846 epitope, a putative marker of cartilage aggrecan synthesis. METHODS: Samples of knee joint fluid from 385 patients and 9 healthy-knee volunteers were obtained in a cross-sectional study. Study groups were acute PPA/ pseudogout (n = 60), anterior cruciate ligament (ACL) rupture (n = 159), meniscus lesion (n = 129), and primary knee OA (n = 37). The 846 epitope on aggrecan was assayed by competitive solution-phase radioimmunoassay. Aggrecan fragments were assayed by enzyme-linked immunosorbent assay using a monoclonal antibody (1-F21). Cartilage oligomeric matrix protein (COMP), C-propeptide of type II collagen (CPII), bone sialoprotein, matrix metalloproteinases 1 and 3, and tissue inhibitor of metalloproteinases 1 were previously quantified by immunoassays. RESULTS: Reactivity of the 846 epitope was increased in all study groups compared with the reference group, and was highest in patients with primary OA. The median levels (in microg fetal aggrecan equivalents/ml) of the epitope were 0.28 (range 0.24-0.47) in the reference group, 0.48 (range 0.26-1.32) in PPA/pseudogout, 0.61 (range 0.12-2.87) in ACL rupture, 0.53 (range 0.22-3.02) in meniscus lesion, and 0.68 (range 0.31-4.31) in primary OA. The 846 epitope reactivity per microg aggrecan fragments in the joint fluid was higher in late-stage OA than in early-stage OA. Epitope 846 reactivity correlated positively with several markers of matrix turnover, particularly with COMP (r(s) = 0.421) and CPII (r(s) = 0.307). CONCLUSION: The observed differences in 846 epitope reactivity in synovial fluid, and its concentration in relation to aggrecan and other markers of matrix turnover, were consistent with marked ongoing changes in aggrecan turnover after joint injury and in the development of OA. OA is thus a disease characterized by dynamic changes in tissue macromolecule turnover, which is reflected by measurable changes in aggrecan epitopes in the synovial fluid.  (+info)