Antibiotic synergy and antagonism against clinical isolates of Klebsiella species. (1/765)

Minimal inhibitory concentrations of kanamycin, gentamicin, amikacin, cephalothin, and chloramphenicol were determined in Trypticase soy broth for 70 clinical isolates of Klebsiella species. Gentamicin and amikacin were the most active on a weight basis. Chloramphenicol was more active than kanamycin, and cephalothin was the least active of all. Studies using a microtiter modification of the checkerboard technique were performed to evaluate the comparative activity of the three aminoglycosides in combination with either chloramphenicol or cephalothin. The cephalothin-aminoglycoside combinations demonstrated synergy in >80% of the isolates tested. No antagonism was noted. The chloramphenicol-aminoglycoside combinations showed antagonism in 35 to 45% of the isolates tested. The data suggest that the chloramphenicol-aminoglycoside combinations be used with caution when treating serious infections where Klebsiella is a potential pathogen.  (+info)

Strength and regulation of the different promoters for chromosomal beta-lactamases of Klebsiella oxytoca. (2/765)

The two groups of chromosomal beta-lactamases from Klebsiella oxytoca (OXY-1 and OXY-2) can be overproduced 73- to 223-fold, due to point mutations in the consensus sequences of their promoters. The different versions of promoters from blaOXY-1 and blaOXY-2 were cloned upstream of the chloramphenicol acetyltransferase (CAT) gene of pKK232-8, and their relative strengths were determined in Escherichia coli and in K. oxytoca. The three different mutations in the OXY beta-lactamase promoters resulted in a 4- to 31-fold increase in CAT activity compared to that of the wild-type promoter. The G-->T transversion in the first base of the -10 consensus sequence caused a greater increase in the promoter strength of the wild-type promoter than the two other principal mutations (a G-to-A transition of the fifth base of the -10 consensus sequence and a T-to-A transversion of the fourth base of the -35 sequence). The strength of the promoter carrying a double mutation (transition in the Pribnow box and the transversion in the -35 hexamer) was increased 15- to 61-fold in comparison to that of the wild-type promoter. A change from 17 to 16 bp between the -35 and -10 consensus sequences resulted in a ninefold decrease of the promoter strength. The expression of the blaOXY promoter in E. coli differs from that in K. oxytoca, particularly for promoters carrying strong mutations. Furthermore, the blaOXY promoter appears not to be controlled by DNA supercoiling or an upstream curved DNA, but it is dependent on the gene copy number.  (+info)

Genetic characterization of resistance to extended-spectrum beta-lactams in Klebsiella oxytoca isolates recovered from patients with septicemia at hospitals in the Stockholm area. (3/765)

Two beta-lactamase gene regions were characterized by DNA sequencing in eight clinical isolates of Klebsiella oxytoca. The blaOXY-2a region encoded a beta-lactamase nearly identical to OXY-2 (one amino acid residue substituted) and conferred aztreonam and cefuroxime resistance on the K. oxytoca isolates. Overproduction of OXY-2a was caused by a G-to-A substitution of the fifth nucleotide in the -10 consensus sequence of blaOXY-2a. The blaOXY-1a was identified in a susceptible strain, and the OXY-1a enzyme differed from OXY-1 by two amino acid residues.  (+info)

Characterization and nucleotide sequence of a Klebsiella oxytoca cryptic plasmid encoding a CMY-type beta-lactamase: confirmation that the plasmid-mediated cephamycinase originated from the Citrobacter freundii AmpC beta-lactamase. (4/765)

Plasmid pTKH11, originally obtained by electroporation of a Klebsiella oxytoca plasmid preparation into Escherichia coli XAC, expressed a high level of an AmpC-like beta-lactamase. The enzyme, designated CMY-5, conferred resistance to extended-spectrum beta-lactams in E. coli; nevertheless, the phenotype was cryptic in the K. oxytoca donor. Determination of the complete nucleotide sequence of pTKH11 revealed that the 8,193-bp plasmid encoded seven open reading frames, including that for the CMY-5 beta-lactamase (blaCMY-5). The blaCMY-5 product was similar to the plasmidic CMY-2 beta-lactamase of K. pneumoniae and the chromosomal AmpC of Citrobacter freundii, with 99.7 and 97.0% identities, respectively; there was a substitution of phenylalanine in CMY-5 for isoleucine 105 in CMY-2. blaCMY-5 was followed by the Blc and SugE genes of C. freundii, and this cluster exhibited a genetic organization identical to that of the ampC region on the chromosome of C. freundii; these results confirmed that C. freundii AmpC was the evolutionary origin of the plasmidic cephamycinases. In the K. oxytoca host, the copy number of pTKH11 was very low and the plasmid coexisted with plasmid pNBL63. Analysis of the replication regions of the two plasmids revealed 97% sequence similarity in the RNA I transcripts; this result implied that the two plasmids might be incompatible. Incompatibility of the two plasmids might explain the cryptic phenotype of blaCMY-5 in K. oxytoca through an exclusion effect on pTKH11 by resident plasmid pNBL63.  (+info)

Use of microdilution panels with and without beta-lactamase inhibitors as a phenotypic test for beta-lactamase production among Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter freundii, and Serratia marcescens. (5/765)

Over the past decade, a number of new beta-lactamases have appeared in clinical isolates of Enterobacteriaceae that, unlike their predecessors, do not confer beta-lactam resistance that is readily detected in routine antibiotic susceptibility tests. Because optimal methodologies are needed to detect these important new beta-lactamases, a study was designed to evaluate the ability of a panel of various beta-lactam antibiotics tested alone and in combination with beta-lactamase inhibitors to discriminate between the production of extended-spectrum beta-lactamases, AmpC beta-lactamases, high levels of K1 beta-lactamase, and other beta-lactamases in 141 isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii, and Serratia marcescens possessing well-characterized beta-lactamases. The microdilution panels studied contained aztreonam, cefpodoxime, ceftazidime, cefotaxime, and ceftriaxone, with and without 1, 2, and 4 microg of clavulanate per ml or 8 microg of sulbactam per ml and cefoxitin and cefotetan with and without 8 microg of sulbactam per ml. The results indicated that a minimum panel of five tests would provide maximum separation of extended-spectrum beta-lactamase high AmpC, high K1, and other beta-lactamase production in Enterobacteriaceae. These included cefpodoxime, cefpodoxime plus 4 microg of clavulanate per ml, ceftazidime, ceftriaxone, and ceftriaxone plus 8 microg of sulbactam per ml. Ceftriaxone plus 2 microg of clavulanate per ml could be substituted for cefpodoxime plus 4 microg of clavulanate per ml without altering the accuracy of the tests. This study indicated that tests with key beta-lactam drugs, alone and in combination with beta-lactamase inhibitors, could provide a convenient approach to the detection of a variety of beta-lactamases in members of the family Enterobacteriaceae.  (+info)

Ankylosing spondylitis in monozygotic twins: studies on immunological parameters. (6/765)

OBJECTIVE: To examine immunological parameters that might explain disease discordance in monozygotic twin pairs with ankylosing spondylitis (AS). METHODS: 11 monozygotic twin pairs (nine with AS, two with undifferentiated spondyloarthropathy) were investigated. The peripheral T cell receptor Vbeta repertoire was investigated using FACS analysis and 14 different Vbeta antibodies. In addition serum samples were tested for antibodies to Klebsiella pneumoniae, Streptococcus pyogenes, Candida albicans, Proteus mirabilis, and Escherichia coli. Peripheral blood lymphocyte reactivity against a number of bacteria was investigated by interferon gamma ELISPOT assays. RESULTS: Twins suffering from AS showed cellular hyporeactivity against K pneumoniae, S pyogenes, C albicans in the ELISPOT assays compared with healthy twins. In contrast with the antibody data, where no significant differences were observed between the two groups, AS concordant twins showed the most pronounced differences in their Vbeta repertoire on CD4+ and CD8+ lymphocytes. CONCLUSIONS: Cellular hyporeactivity of peripheral blood cells to bacterial antigens might reflect defective T cell responses allowing bacterial antigens to persist in diseased patients. There are probably other environmental factors that influence disease concordance.  (+info)

Membrane association and multimerization of secreton component pulC. (7/765)

The PulC component of the Klebsiella oxytoca pullulanase secretion machinery (the secreton) was found by subcellular fractionation to be associated with both the cytoplasmic (inner) and outer membranes. Association with the outer membrane was independent of other secreton components, including the outer membrane protein PulD (secretin). The association of PulC with the inner membrane is mediated by the signal anchor sequence located close to its N terminus. These results suggest that PulC forms a bridge between the two membranes that is disrupted when bacteria are broken open for fractionation. Neither the signal anchor sequence nor the cytoplasmic N-terminal region that precedes it was found to be required for PulC function, indicating that PulC does not undergo sequence-specific interactions with other cytoplasmic membrane proteins. Cross-linking of whole cells resulted in the formation of a ca. 110-kDa band that reacted with PulC-specific serum and whose detection depended on the presence of PulD. However, antibodies against PulD failed to react with this band, suggesting that it could be a homo-PulC trimer whose formation requires PulD. The data are discussed in terms of the possible role of PulC in energy transduction for exoprotein secretion.  (+info)

Molecular characterization of TEM-59 (IRT-17), a novel inhibitor-resistant TEM-derived beta-lactamase in a clinical isolate of Klebsiella oxytoca. (8/765)

A clinical isolate of Klebsiella oxytoca (Kox 443) was found to have a low-level resistance to broad-spectrum penicillins (MICs of amoxicillin and ticarcillin, 256 and 32 microg/ml, respectively), without substantial potentiation by 2 microg of clavulanic acid per ml (amoxicillin- and ticarcillin-clavulanate, 128 and 8 microg/ml, respectively), while being fully susceptible to cephalosporins and other beta-lactam antibiotics. These resistances were carried by a ca. 50-kb conjugative plasmid that encodes a single beta-lactamase with a pI of 5.6. Compared to TEM-2, this enzyme exhibited a 3- to 30-fold higher Km and a decreased maximal hydrolysis rate for beta-lactams; higher concentrations of suicide inactivators (5- to 500-fold higher concentrations giving a 50% reduction in hydrolysis) were required for inhibition. Nucleotide sequence analysis revealed identity between the blaTEM gene of Kox 443 and the blaTEM-2 gene, except for a single A-to-G change at position 590, leading to the amino acid change from Ser-130 Gly. This mutation has not been reported previously in the TEM type beta-lactamases produced by clinical strains, and the novel enzyme was called TEM-59 (alternative name IRT-17). This is the first description of an inhibitor-resistant TEM-derived enzyme in the species K. oxytoca.  (+info)