(1/30793) Effect of trauma on plasma glucagon and insulin concentrations in sheep.

Portal plasma glucagon and insulin concentrations were measured before and after acute trauma (liver biosy). The trauma was sufficient to increase glucagon concentrations and depress insulin concentrations. These changes were associated with a marked hyperglycemia. Infusion of glucagon was insufficient to prevent stress inhibition of insulin secretion. The stimulation of glucagon secretion and inhibition of insulin secretion were of about one hour duration. These findings indicate that glucagon and insulin in conjunction with the nervous system may play an important role in the development of stress related hyperglycemia.  (+info)

(2/30793) Effects of glucagon and insulin on lipolysis and ketogenesis in sheep.

The hepatic and portal productions of acetoacetate and beta-hydroxybutyrate and lipolysis were studied in normal and insulin-controlled alloxan-diabetic sheep. Since hyperinsulinemia is associated with glucagon administration, the latter group of sheep were used to maintain constant plasma insulin levels. After control values were obtained glucagon was infused intraportally at 90 mug/hr for two hours. The ketone body production by portal drained viscera was not significantly affected by glucagon. In alloxanized sheep, glucagon significantly (P less than 0.01) increased net hepatic production of acetoacetate (from -0.54 +/- 0.08 to 0.46 +/- 0.07 g/hr). Lipolysis also increased. However, in the normal sheep, hyperinsulinemia prevented any stimulatory effect of glucagon on hepatic ketogenesis and lipolysis. Therefore, while glucagon appears capable of stimulating ketogenesis andlipolysis, these effects are readily suppressed by insulin.  (+info)

(3/30793) Vasopressin stimulation of acetate incorporation into lipids in a dimethylbenz(a)anthracene-induced rat mammary tumor cell line.

In a preliminary report we described the effects of rat prolactin on the incorporation of [14C]acetate into lipids by a cell line from a dimethylbenz(a)anthracene-induced rat mammary tumor. The characteristics of the response to prolactin were very similar to those described for the normal rat mammary gland; namely, insulin was required for full expression of the response, maximal activity was not seen until 36 hr after the addition of the hormones, and growth hormone was able to elicit the same response. However, we were unable to detect binding of 125I-labeled prolactin to these cells, and furthermore, other more purified prolactin preparations were inactive. Upon further investigation we discovered that the activity resided in a low-molecular-weight fraction of the rat prolactin B-1 preparation and was probably either vasopressin or oxytocin or both. These data suggest the possibility that vasopressin may play a role in rodent mammary tumorigenesis.  (+info)

(4/30793) Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus.

Previously we demonstrated the expression of the long form of the leptin receptor in rodent pancreatic beta-cells and an inhibition of insulin secretion by leptin via activation of ATP-sensitive potassium channels. Here we examine pancreatic islets isolated from pancreata of human donors for their responses to leptin. The presence of leptin receptors on islet beta-cells was demonstrated by double fluorescence confocal microscopy after binding of a fluorescent derivative of human leptin (Cy3-leptin). Leptin (6.25 nM) suppressed insulin secretion of normal islets by 20% at 5.6 mM glucose. Intracellular calcium responses to 16.7 mM glucose were rapidly reduced by leptin. Proinsulin messenger ribonucleic acid expression in islets was inhibited by leptin at 11.1 mM, but not at 5.6 mM glucose. Leptin also reduced proinsulin messenger ribonucleic acid levels that were increased in islets by treatment with 10 nM glucagon-like peptide-1 in the presence of either 5.6 or 11.1 mM glucose. These findings demonstrate direct suppressive effects of leptin on insulin-producing beta-cells in human islets at the levels of both stimulus-secretion coupling and gene expression. The findings also further indicate the existence of an adipoinsular axis in humans in which insulin stimulates leptin production in adipocytes and leptin inhibits the production of insulin in beta-cells. We suggest that dysregulation of the adipoinsular axis in obese individuals due to defective leptin reception by beta-cells may result in chronic hyperinsulinemia and may contribute to the pathogenesis of adipogenic diabetes.  (+info)

(5/30793) Cardiovascular disease in insulin dependent diabetes mellitus: similar rates but different risk factors in the US compared with Europe.

BACKGROUND: Cardiovascular disease (CVD) in insulin dependent diabetes mellitus (IDDM) has been linked to renal disease. However, little is known concerning international variation in the correlations with hyperglycaemia and standard CVD risk factors. METHODS: A cross-sectional comparison was made of prevalence rates and risk factor associations in two large studies of IDDM subjects: the Pittsburgh Epidemiology of Diabetes Complications Study (EDC) and the EURODIAB IDDM Complications Study from 31 centres in Europe. Subgroups of each were chosen to be comparable by age and duration of diabetes. The EDC population comprises 286 men (mean duration 20.1 years) and 281 women (mean duration 19.9 years); EURODIAB 608 men (mean duration 18.1 years) and 607 women (mean duration 18.9 years). The mean age of both populations was 28 years. Cardiovascular disease was defined by a past medical history of myocardial infarction, angina, and/or the Minnesota ECG codes (1.1-1.3, 4.1-4.3, 5.1-5.3, 7.1). RESULTS: Overall prevalence of CVD was similar in the two populations (i.e. men 8.6% versus 8.0%, women 7.4% versus 8.5%, EURODIAB versus EDC respectively), although EDC women had a higher prevalence of angina (3.9% versus 0.5%, P < 0.001). Multivariate modelling suggests that glycaemic control (HbA1c) is not related to CVD in men. Age and high density lipoprotein cholesterol predict CVD in EURODIAB, while triglycerides and hypertension predict CVD in EDC. For women in both populations, age and hypertension (or renal disease) are independent predictors. HbA1c is also an independent predictor-inversely in EURODIAB women (P < 0.008) and positively in EDC women (P = 0.03). Renal disease was more strongly linked to CVD in EDC than in EURODIAB. CONCLUSIONS: Despite a similar prevalence of CVD, risk factor associations appear to differ in the two study populations. Glycaemic control (HbA1c) does not show a consistent or strong relationship to CVD.  (+info)

(6/30793) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes.

Dysfunction of the pancreatic beta cell is an important defect in the pathogenesis of type 2 diabetes, although its exact relationship to the insulin resistance is unclear. To determine whether insulin signaling has a functional role in the beta cell we have used the Cre-loxP system to specifically inactivate the insulin receptor gene in the beta cells. The resultant mice exhibit a selective loss of insulin secretion in response to glucose and a progressive impairment of glucose tolerance. These data indicate an important functional role for the insulin receptor in glucose sensing by the pancreatic beta cell and suggest that defects in insulin signaling at the level of the beta cell may contribute to the observed alterations in insulin secretion in type 2 diabetes.  (+info)

(7/30793) Hormonal regulation of messenger ribonucleic acid expression for steroidogenic factor-1, steroidogenic acute regulatory protein, and cytochrome P450 side-chain cleavage in bovine luteal cells.

To examine hormonal regulation of genes pertinent to luteal steroidogenesis, bovine theca and granulosa cells derived from preovulatory follicles were cultured with various combinations of forskolin and insulin. On Day 8 of culture, progesterone production was measured, and mRNA levels of steroidogenic factor-1 (SF-1), cytochrome P450 side-chain cleavage enzyme (P450scc), and steroidogenic acute regulatory protein (StAR) were determined by means of semiquantitative reverse transcription-polymerase chain reaction. Notably, the combination of forskolin plus insulin stimulated progesterone production in luteinized theca cells. This was probably a result of a synergistic interaction between forskolin and insulin, observed on both StAR and P450scc mRNA levels. However, in luteinized granulosa cells (LGC), forskolin and insulin each independently were able to up-regulate the levels of P450scc and StAR mRNA levels, respectively. Moreover, insulin alone was sufficient to maintain the high steady-state levels of StAR mRNA in LGC. Both insulin and insulin-like growth factor I enhanced StAR gene expression in LGC. SF-1 was constitutively expressed in bovine luteal cells; its amounts did not vary between the two luteal cell types or with hormonal treatments. In summary, this study demonstrates a distinct, cell-type specific regulation of StAR and P450scc mRNA in the two bovine luteal cell types.  (+info)

(8/30793) Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus.

BACKGROUND: The plasma concentrations of total homocysteine (tHcy) and total cysteine (tCys) are determined by intracellular metabolism and by renal plasma clearance, and we hypothesized that glomerular filtration is a major determinant of plasma tHcy and tCys. We studied the relationships between the glomerular filtration rate (GFR) and plasma tHcy and tCys in populations of diabetic patients with particularly wide ranges of GFR. METHODS: We measured GFR, urine albumin excretion rate (UAER), plasma tHcy, tCys, methionine, vitamin B12, folate, C-peptide, and routine parameters in 50 insulin-dependent diabetes mellitus (IDDM) and 30 non-insulin-dependent diabetes mellitus (NIDDM) patients. All patients underwent intensive insulin treatment and had a serum creatinine concentration below 115 micromol/liter. RESULTS: Mean plasma tHcy in diabetic patients (0.1 micromol/liter) was lower than in normal persons (11.1 micromol/liter, P = 0.0014). Mean plasma tCys in diabetic patients (266.1 micromol/liter) was also lower than in normal persons (281.9 micromol/liter, P = 0.0005). Seventy-three percent of the diabetic patients had relative hyperfiltration. Plasma tHcy and tCys were closely and independently associated with GFR, serum folate, and serum B12. However, plasma tHcy was not independently associated with any of the 22 other variables tested, including age, serum creatinine concentration, UAER, total daily insulin dose, and glycemic control. CONCLUSIONS: Glomerular filtration rate is an independent determinant of plasma tHcy and tCys concentrations, and GFR is rate limiting for renal clearance of both homocysteine and cysteine in diabetic patients without overt nephropathy. Declining GFR explains the age-related increase in plasma tHcy, and hyperfiltration explains the lower than normal mean plasma tHcy and tCys concentrations in populations of diabetic patients.  (+info)