(1/66693) Level of retinoblastoma protein expression correlates with p16 (MTS-1/INK4A/CDKN2) status in bladder cancer.

Recent studies have shown that patients whose bladder cancer exhibit overexpression of RB protein as measured by immunohistochemical analysis do equally poorly as those with loss of RB function. We hypothesized that loss of p16 protein function could be related to RB overexpression, since p16 can induce transcriptional downregulation of RB and its loss may lead to aberrant RB regulation. Conversely, loss of RB function has been associated with high p16 protein expression in several other tumor types. In the present study RB negative bladder tumors also exhibited strong nuclear p16 staining while each tumor with strong, homogeneous RB nuclear staining were p16 negative, supporting our hypothesis. To expand on these immunohistochemical studies additional cases were selected in which the status of the p16 encoding gene had been determined at the molecular level. Absent p16 and high RB protein expression was found in the tumors having loss of heterozygosity within 9p21 and a structural change (mutation or deletion) of the remaining p16 encoding gene allele, confirming the staining results. These results strongly support the hypothesis that the RB nuclear overexpression recently associated with poor prognosis in bladder cancer is also associated with loss of p16 function and implies that loss of p16 function could be equally deleterious as RB loss in bladder and likely other cancers.  (+info)

(2/66693) Decreased expression of the pro-apoptotic protein Par-4 in renal cell carcinoma.

Par-4 is a widely expressed leucine zipper protein that confers sensitization to apoptosis induced by exogenous insults. Because the expression of genes that promote apoptosis may be down-regulated during tumorigenesis, we sought to examine the expression of Par-4 in human tumors. We present here evidence that Par-4 protein levels were severely decreased in human renal cell carcinoma specimens relative to normal tubular cells. Replenishment of Par-4 protein levels in renal cell carcinoma cell lines conferred sensitivity to apoptosis. Because apoptosis may serve as a defense mechanism against malignant transformation or progression, decreased expression of Par-4 may contribute to the pathophysiology of renal cell carcinoma.  (+info)

(3/66693) Expression of Bcl-2 protein is decreased in colorectal adenocarcinomas with microsatellite instability.

Bcl-2 is known to inhibit apoptosis and is thought to play a role in colorectal tumour development. Studies of the promoter region of bcl-2 have indicated the presence of a p53 responsive element which downregulates bcl-2 expression. Since p53 is commonly mutated in colorectal cancers, but rarely in those tumours showing microsatellite instability (MSI), the aim of this study was to examine the relationship of bcl-2 protein expression to MSI, as well as to other clinicopathological and molecular variables, in colorectal adenocarcinomas. Expression of bcl-2 was analysed by immunohistochemistry in 71 colorectal cancers which had been previously assigned to three classes depending upon their levels of MSI. MSI-high tumours demonstrated instability in three or more of six microsatellite markers tested, MSI-low tumours in one or two of six, and MSI-null in none of six. Bcl-2 expression in tumours was quantified independently by two pathologists and assigned to one of five categories, with respect to the number of cells which showed positive staining: 0, up to 5%; 1, 6-25%; 2, 26-50%; 3, 51-75%; and 4, > or =76%. Bcl-2 negative tumours were defined as those with a score of 0. Bcl-2 protein expression was tested for association with clinicopathological stage, differentiation level, tumour site, age, sex, survival, evidence of p53 inactivation and MSI level. A significant association was found between bcl-2 expression and patient survival (P = 0.012, Gehan Wilcoxon test). Further, a significant reciprocal relationship was found between bcl-2 expression and the presence of MSI (P = 0.012, Wilcoxon rank sum test). We conclude that bcl-2 expressing colorectal cancers are more likely to be MSI-null, and to be associated with improved patient survival.  (+info)

(4/66693) Immune responses to all ErbB family receptors detectable in serum of cancer patients.

Employing NIH3T3 transfectants with individual human ErbB receptor coding sequences as recombinant antigen sources, we detected by immunoblot analysis specific immunoreactivity against all four ErbB receptors among 13 of 41 sera obtained from patients with different types of epithelial malignancies. Overall, serum positivity was most frequently directed against ErbB2 followed by EGFR, ErbB3 and ErbB4. Specificity patterns comprised tumor patients with unique serum reactivity against ErbB2 or ErbB4. Moreover, approximately half of the positive sera exhibited concomitant reactivity with multiple ErbB receptors including EGFR and ErbB2, EGFR and ErbB4, ErbB2 and ErbB3 or EGFR, ErbB2 and ErbB3. Serum reactivity was confirmed for the respective ErbB receptors expressed by human tumor cells and corroborated on receptor-specific immunoprecipitates. Positive sera contained ErbB-specific antibodies of the IgG isotype. Representative immunohistochemical analysis of tumor tissues suggested overexpression of ErbB receptors for which serum antibodies were detectable in five of six patients. These findings implicate multiple ErbB receptors including ErbB3 and ErbB4 in addition to EGFR and ErbB2 in primary human cancer. Heterogeneity of natural ErbB-specific responses in cancer patients warrants their evaluation in light of immunotherapeutic approaches targeting these receptors.  (+info)

(5/66693) Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer.

Glutathione-S-Transferases (GSTs) comprise a family of isoenzymes that provide protection to mammalian cells against electrophilic metabolites of carcinogens and reactive oxygen species. Previous studies have shown that the CpG-rich promoter region of the pi-class gene GSTP1 is methylated at single restriction sites in the majority of prostate cancers. In order to understand the nature of abnormal methylation of the GSTP1 gene in prostate cancer we undertook a detailed analysis of methylation at 131 CpG sites spanning the promoter and body of the gene. Our results show that DNA methylation is not confined to specific CpG sites in the promoter region of the GSTP1 gene but is extensive throughout the CpG island in prostate cancer cells. Furthermore we found that both alleles are abnormally methylated in this region. In normal prostate tissue, the entire CpG island was unmethylated, but extensive methylation was found outside the island in the body of the gene. Loss of GSTP1 expression correlated with DNA methylation of the CpG island in both prostate cancer cell lines and cancer tissues whereas methylation outside the CpG island in normal prostate tissue appeared to have no effect on gene expression.  (+info)

(6/66693) The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules.

The disulfide-bonded loop of chromogranin B (CgB), a regulated secretory protein with widespread distribution in neuroendocrine cells, is known to be essential for the sorting of CgB from the trans-Golgi network (TGN) to immature secretory granules. Here we show that this loop, when fused to the constitutively secreted protein alpha1-antitrypsin (AT), is sufficient to direct the fusion protein to secretory granules. Importantly, the sorting efficiency of the AT reporter protein bearing two loops (E2/3-AT-E2/3) is much higher compared with that of AT with a single disulfide-bonded loop. In contrast to endogenous CgB, E2/3-AT-E2/3 does not undergo Ca2+/pH-dependent aggregation in the TGN. Furthermore, the disulfide-bonded loop of CgB mediates membrane binding in the TGN and does so with 5-fold higher efficiency if two loops are present on the reporter protein. The latter finding supports the concept that under physiological conditions, aggregates of CgB are the sorted units of cargo which have multiple loops on their surface leading to high membrane binding and sorting efficiency of CgB in the TGN.  (+info)

(7/66693) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation.

Mouse cytomegalovirus (MCMV) early gene expression interferes with the major histocompatibility complex class I (MHC class I) pathway of antigen presentation. Here we identify a 48 kDa type I transmembrane glycoprotein encoded by the MCMV early gene m06, which tightly binds to properly folded beta2-microglobulin (beta2m)-associated MHC class I molecules in the endoplasmic reticulum (ER). This association is mediated by the lumenal/transmembrane part of the protein. gp48-MHC class I complexes are transported out of the ER, pass the Golgi, but instead of being expressed on the cell surface, they are redirected to the endocytic route and rapidly degraded in a Lamp-1(+) compartment. As a result, m06-expressing cells are impaired in presenting antigenic peptides to CD8(+) T cells. The cytoplasmic tail of gp48 contains two di-leucine motifs. Mutation of the membrane-proximal di-leucine motif of gp48 restored surface expression of MHC class I, while mutation of the distal one had no effect. The results establish a novel viral mechanism for downregulation of MHC class I molecules by directly binding surface-destined MHC complexes and exploiting the cellular di-leucine sorting machinery for lysosomal degradation.  (+info)

(8/66693) Expression of extracellular matrix proteins in cervical squamous cell carcinoma--a clinicopathological study.

AIM: To evaluate the intracellular and peritumoral expression of matrix proteins in squamous cell carcinoma of the uterine cervix using immunohistochemistry. METHODS: 71 squamous cell carcinomas and 10 controls were stained for laminin, fibronectin, and collagen IV. Cytoplasmic staining in tumour cells and peritumoral deposition of matrix proteins were evaluated. The association between staining results and patient age, tumour stage, histological grade, and survival was studied. RESULTS: Positive cytoplasmic staining for laminin, fibronectin, and collagen IV was observed in 17 (23.9%), 27 (38%), and 10 (14.1%) cases, respectively. Staining for laminin was most pronounced in the invasive front of tumour islands, while for fibronectin and collagen IV it appeared to be diffuse. Peritumoral staining for laminin and collagen IV was detected in 12 cases (16.9%). Early stage (Ia1-Ia2) tumours were uniformly negative for all three proteins. Cytoplasmic staining for laminin correlated with positive staining for fibronectin and collagen IV, and with the presence of a peritumoral deposition of collagen IV and laminin. There was no correlation with any of the three markers between staining results and patient age, stage, grade, or survival. CONCLUSIONS: Expression of extracellular matrix proteins in some cervical squamous cell carcinomas might reflect the enhanced ability of these tumours to modify the peritumoral stroma. This ability seems to be absent in early stage tumours. The correlation between intracytoplasmic and peritumoral expression of matrix proteins supports the evidence of their synthesis by tumour cells. However, this property did not correlate with disease outcome in this study.  (+info)