Novel mechanisms control the folding and assembly of lambda5/14.1 and VpreB to produce an intact surrogate light chain. (1/75)

Surrogate light chain, which escorts the mu heavy chain to the cell surface, is a critical component of the pre-B cell receptor complex. The two proteins that comprise the surrogate light chain, VpreB and lambda5/14.1, contain both unique regions and Ig-like domains. The unique regions have been postulated to function in the assembly of the surrogate light chain. However, by using transient transfection of COS7 cells, we show that deletion of the unique regions of both proteins did not inhibit the assembly of surrogate light chain. Instead, in vivo folding studies showed that the unique region of lambda5/14.1 acts as an intramolecular chaperone by preventing the folding of this protein when it is expressed in the absence of its partner, VpreB. The Ig domains of both lambda5/14.1 and VpreB are atypical. The one in VpreB lacks one of the canonical beta strands whereas the one in lambda5/14.1 has an extra beta strand. Deletion of the extra beta strand in lambda5/14.1 completely abrogated the formation of the surrogate light chain, demonstrating that complementation of the incomplete Ig domain in VpreB by the extra beta strand in lambda5/14.1 was necessary and sufficient for the folding and assembly of these proteins. Our studies reveal two novel mechanisms for regulating surrogate light chain formation: (i) the presence of an intramolecular chaperone that prevents folding of the unassembled subunit but that remains part of the mature assembled protein, and (ii) splitting an Ig domain between two proteins to control their folding and assembly.  (+info)

Partial block in B lymphocyte development at the transition into the pre-B cell receptor stage in Vpre-B1-deficient mice. (2/75)

The surrogate light chain (SL) is composed of two polypeptides, Vpre-B and lambda5. In large pre-BII cells the SL chain associates with Ig mu heavy chain (muH) to form the pre-B cell receptor (pre-BCR). In mice there are two Vpre-B genes which are 98% identical within the coding regions. The two genes are co-expressed at the RNA level and encode functional proteins that can assemble with lambda5. However, it is not known whether both gene products serve the same function in vivo. Here we have established mice that lack the Vpre-B1 gene (VpreB1(-/-)), but still express the Vpre-B2 gene, both as RNA and protein. In Vpre-B1(-/-) mice, the bone marrow cellularity and the percentage of B220+ cells is normal. However, among the B220+ cells, the percentage of pre-BI cells is increased, and the percentage of pre-BII and immature B cells is slightly decreased, suggesting that the lack of Vpre-B1 causes a partial block at the transition from pre-BI to pre-BII cells, i.e. into the pre-BCR stage. The number of cells that produce a functional pre-BCR is thus lower, but the cells that reach this stage are normal as they can be expanded by proliferation and then differentiate into more mature cells. The spleens of Vpre-B1 homozygous mutant mice show normal numbers of B and T lymphocytes. Moreover, the Ig loci are allelicly excluded and the homozygous mutant mice respond with normal levels of antigen-specific antibodies to T-dependent antigens. These results demonstrate that VpreB2 alone is capable of supporting B lymphocyte development in the bone marrow and can give rise to immuno-competent cells in the periphery.  (+info)

The human (PsiL+mu-) proB complex: cell surface expression and biochemical structure of a putative transducing receptor. (3/75)

The surrogate light chain (PsiL) associates with mu and Igalpha-Igbeta chains to form the preB-cell receptor that plays a critical role in early B-cell differentiation. Discrepancies exist in human concerning the existence of PsiL+mu- proB cells and the biochemical structure of such a proB-cell complex remains elusive. Among new antihuman VpreB monoclonal antibodies (MoAbs), 5 of the gamma kappa isotype bound to recombinant and native VpreB protein with high affinity. They recognized 4 discrete epitopes, upon which 2 were in the extra-loop fragment. Such MoAbs detected the PsiL at the cell surface of either preB or on both proB and preB cells. The previously reported SLC1/SLC2 MoAbs recognize a conformational epitope specific for the mu/PsiL association in accordance with their preB-cell reactivity. Using the proB/preB 4G7 MoAb, PsiL cell surface expression was detected on normal bone marrow, not only on CD34(-)CD19(+) preB but also on CD34(+)CD19(+) proB cells. Futhermore, this MoAb identified PsiL+mu- fresh proB leukemic cells of the TEL/AML1 type. Biochemical studies showed that, at the proB stage, the PsiL is associated noncovalently with two proteins of 105 and 130 kD. Triggering of this complex induces intracellular Ca2+ flux, suggesting that the PsiL may be involved in a new receptor at this early step of the B-cell differentiation.  (+info)

Lambda5 is required for rearrangement of the Ig kappa light chain gene in pro-B cell lines. (4/75)

Lambda5 associates with V(pre-B) to form the surrogate light (L) chain. The phenotype of lambda5 knockout mice showed severe impairment of B cell development from pro-B to immature B cell stages. To investigate the function of the surrogate L chain at this stage, we restored expression of lambda5 to lambda5-deficient pro-B cell lines which were established from bone marrow cells of lambda5 knockout mice in the presence of IL-7 and a stromal cell line. Some of these lines are severely impaired in B cell development from pro-B to immature B cell stages as is seen in vivo in lambda5 knockout mice. Restoration of lambda5 protein by retroviral-mediated gene transfer into established lambda5-deficient pro-B cell lines induced rearrangement of the Ig kappa L chain genes after removal of IL-7 from the culture. Immunoprecipitation revealed that the restored lambda5 in the cell line is coupled with V(pre-B) to form the surrogate L chain. The results demonstrate that formation of a complete surrogate L chain, consisting of both lambda5 and V(pre-B), stimulates efficient rearrangement of the kappa L chain genes.  (+info)

Influence of prolactin on the differentiation of mouse B-lymphoid precursors. (5/75)

Development and activation of immune cells are submitted to hormonal influences, as illustrated by the roles of corticosteroids in thymus, pregnancy-related estrogens in B-cell development, or prolactin (PRL) on T-cell generation and function. We have analyzed the putative role of PRL in B lymphopoiesis and differentiation. We chose as an experimental model the interleukin (IL)-3 dependent BaF-3 pro-B cell line, which was transfected with the rat long form of the PRL receptor (PRL-R) and transferred from IL-3- to PRL-enriched media. When stimulated with PRL, the PRL-R transfectants underwent some changes characteristic of B-cell differentiation: (a) IL-2R alpha chain became positively controlled by PRL; (b) antiapoptotic Bcl-2 protein was induced by PRL in a dose-dependent manner; and (c) transcription of the pre-B cell receptor encoding the lambda5 gene was strongly up-regulated. We attempted to evaluate the differentiation-promoting activity of PRL in more physiological conditions, and the presence of PRL-R in bone marrow B-cell precursors was revealed. Furthermore, PRL promoted significant expansions of defined B-lineage cell populations in short-term bone marrow cell cultures. These findings suggest that PRL, in collaboration with other cytokines and hormonal influences, modulates B-cell development.  (+info)

Identification of CD19(-)B220(+)c-Kit(+)Flt3/Flk-2(+)cells as early B lymphoid precursors before pre-B-I cells in juvenile mouse bone marrow. (6/75)

The combined analysis of the expression of receptor tyrosine kinases c-Kit and Flt3/Flk-2 and of the human CD25 gene expressed as a transgene under the regulation of the mouse lambda5 promoter in the bone marrow of 1-week-old mice allows us to identify three stages of B lymphocyte development before the CD19(+)c-Kit(+) pre-B-I cells. Single-cell PCR analysis of the rearrangement status of the Ig heavy chain alleles allows us to order these early stages of B cell development as follows: (i) B220(+)CD19(-)c-Kit(lo)Flt3/Flk-2(hi)lambda5(-), (ii) B220(+)CD19(-)c-Kit(lo)Flt3/Flk-2(hi)lambda5(+) and (iii) B220(+)CD19(+)c-Kit(lo)Flt3/Flk-2(lo)lambda5(+) before B220(+)CD19(+)c-Kit(lo)Flt3/Flk-2(-)lambda5(+) pre-B-I cells. All these progenitors are clonable on stromal cells in the presence of IL-7 and can differentiate to CD19(+)c-Kit(-) B-lineage cells. A combination of stem cell factor, Flt3 ligand and IL-7 was also able to support the proliferation and differentiation of the progenitors in a suspension culture. Furthermore, the analyses indicate that the onset of D(H)J(H) rearrangements precedes the expression of the lambda5 gene. These progenitor populations were characteristic of juvenile mice and could not be detected in the bone marrow of adult mice. Hence the expression pattern, and probably the function, of the receptor tyrosine kinases in early B cell differentiation appears to be different in juvenile and adult mice.  (+info)

Inducible differentiation and apoptosis of the pre-B cell receptor-positive pre-B cell line. (7/75)

The function of the pre-B cell receptor (pre-BCR) during B cell differentiation is not precisely defined. To investigate the pre-BCR receptor activity, we have established pre-BCR-positive pre-B cell lines that are able to differentiate into immature B cells in vitro. Antibody cross-linking of the pre-BCR induced apoptosis and differentiation accompanied with tyrosine phosphorylation. A specific tyrosine-phosphorylated 43 kDa protein (p43) was found down-stream of the pre-BCR. The results demonstrated the receptor function of pre-BCR, which indicates that a ligand-like molecule or a cross-linking structure on the cell surface is possibly present.  (+info)

Overlapping expression of early B-cell factor and basic helix-loop-helix proteins as a mechanism to dictate B-lineage-specific activity of the lambda5 promoter. (8/75)

The basic helix-loop-helix (bHLH) transcription factors are a large group of proteins suggested to control key events in the development of B lymphocytes as well as of other cellular lineages. To examine how bHLH proteins activate a B-lineage-specific promoter, I investigated the ability of E47, E12, Heb, E2-2, and MyoD to activate the lambda5 surrogate light chain promoter. Comparison of the functional capacity of the E2A-encoded E47 and E12 proteins indicated that even though both were able to activate the lambda5 promoter and act in synergy with early B-cell factor (EBF), E47 displayed a higher functional activity than E12. An ability to act in synergy with EBF was also observed for Heb, E2-2, and MyoD, suggesting that these factors were functionally redundant in this regard. Mapping of functional domains in EBF and E47 revealed that the dimerization and DNA binding domains mediated the synergistic activity. Electrophoretic mobility shift assay analysis using the 5' part of the lambda5 promoter revealed formation of template-dependent heteromeric complexes between EBF and E47, suggesting that the synergistic mechanism involves cooperative binding to DNA. These findings propose a unique molecular function for E47 and provide overlapping expression with EBF as a molecular mechanism to direct B-cell-specific target gene activation by bHLH proteins.  (+info)