Cardiovascular and neuronal responses to head stimulation reflect central sensitization and cutaneous allodynia in a rat model of migraine. (1/2095)

Reduction of the threshold of cardiovascular and neuronal responses to facial and intracranial stimulation reflects central sensitization and cutaneous allodynia in a rat model of migraine. Current theories propose that migraine pain is caused by chemical activation of meningeal perivascular fibers. We previously found that chemical irritation of the dura causes trigeminovascular fibers innervating the dura and central trigeminal neurons receiving convergent input from the dura and skin to respond to low-intensity mechanical and thermal stimuli that previously induced minimal or no responses. One conclusion of these studies was that when low- and high-intensity stimuli induce responses of similar magnitude in nociceptive neurons, low-intensity stimuli must be as painful as the high-intensity stimuli. The present study investigates in anesthetized rats the significance of the changes in the responses of central trigeminal neurons (i.e., in nucleus caudalis) by correlating them with the occurrence and type of the simultaneously recorded cardiovascular responses. Before chemical stimulation of the dura, simultaneous increases in neuronal firing rates and blood pressure were induced by dural indentation with forces >/= 2.35 g and by noxious cutaneous stimuli such as pinching the skin and warming > 46 degrees C. After chemical stimulation, similar neuronal responses and blood pressure increases were evoked by much smaller forces for dural indentation and by innocuous cutaneous stimuli such as brushing the skin and warming it to >/= 43 degrees C. The onsets of neuronal responses preceded the onsets of depressor responses by 1.7 s and pressor responses by 4.0 s. The duration of neuronal responses was 15 s, whereas the duration of depressor responses was shorter (5.8 s) and pressor responses longer (22.7 s) than the neuronal responses. We conclude that the facilitated cardiovascular and central trigeminal neuronal responses to innocuous stimulation of the skin indicate that when dural stimulation induces central sensitization, innocuous stimuli are as nociceptive as noxious stimuli had been before dural stimulation and that a similar process might occur during the development of cutaneous allodynia during migraine.  (+info)

Cytokine-mediated inflammatory hyperalgesia limited by interleukin-4. (2/2095)

1. The effect of IL-4 on responses to intraplantar (i.pl.) carrageenin, bradykinin, TNFalpha, IL-1beta, IL-8 and PGE2 was investigated in a model of mechanical hyperalgesia in rats. Also, the cellular source of the IL-4 was investigated. 2. IL-4, 30 min before the stimulus, inhibited responses to carrageenin, bradykinin, and TNFalpha, but not responses to IL-1beta, IL-8 and PGE2. 3. IL-4, 2 h before the injection of IL-1beta, did not affect the response to IL-1beta, whereas IL-4, 12 or 12+2 h before the IL-1beta, inhibited the hyperalgesia (-30%, -74%, respectively). 4. In murine peritoneal macrophages, murine IL-4 for 2 h before stimulation with LPS, inhibited (-40%) the production of IL-1beta but not PGE2. Murine IL-4 (for 16 h before stimulation with LPS) inhibited LPS-stimulated PGE2 but not IL-1beta. 5. Anti-murine IL-4 antibodies potentiated responses to carrageenin, bradykinin and TNFalpha, but not IL-1beta and IL-8, as well as responses to bradykinin in athymic rats but not in rats depleted of mast cells with compound 40/80. 6. These data suggest that IL-4 released by mast cells limits inflammatory hyperalgesia. During the early phase of the inflammatory response the mode of action of the IL-4 appears to be inhibition of the production TNFalpha, IL-1beta and IL-8. In the later phase of the response, in addition to inhibiting the production of pro-inflammatory cytokines, IL-4 also may inhibit the release of PGs.  (+info)

The effects of inflammation and inflammatory mediators on nociceptive behaviour induced by ATP analogues in the rat. (3/2095)

1. We have studied the behavioural effects of intraplantar injections of adenosine 5'-triphosphate (ATP) and related compounds in freely moving rats and investigated whether these nociceptive effects are augmented in the presence of inflammatory mediators. 2. We find that in normal animals ATP and analogues produce dose-dependent nocifensive behaviour (seen as bursts of elevation of the treated hindpaw), and localized thermal hyperalgesia. The rank order of potency was: alpha,beta-methyleneadenosine 5'-triphosphate (alpha,beta-methylene ATP) > 2-methylthioadenosine triphosphate (2-methylthio ATP) > ATP. After neonatal treatment with capsaicin, to destroy small calibre primary sensory neurones, nocifensive behaviour was largely absent. 3. The effects of ATP analogues were assessed in three models of peripheral sensitization: 2 h after dilute intraplantar carrageenan (0.25% w v(-1)); 24 h after irradiation of the hindpaw with ultraviolet (U.V.) B; immediately following prostaglandin E2 (PGE2) treatment. In all models the effect of alpha,beta-methylene ATP was greatly augmented. After carrageenan, significant hindpaw-lifting behaviour activity was induced by injection of only 0.05 nmol of alpha,beta-methylene ATP, some 100 times less than necessary in normal skin. 4. Our data suggest that it is much more likely that endogenous levels of ATP will reach levels capable of exciting nociceptors in inflamed versus normal skin. Our data also suggest the involvement of P2X3 receptor subunits in ATP-induced nociception.  (+info)

Role of protein kinase A in the maintenance of inflammatory pain. (4/2095)

Although the initiation of inflammatory pain (hyperalgesia) has been demonstrated to require the cAMP second messenger signaling cascade, whether this mechanism and/or other mechanisms underlie the continued maintenance of the induced hyperalgesia is unknown. We report that injection of adenylyl cyclase inhibitors before but not after injection of direct-acting hyperalgesic agents (prostaglandin E2 and purine and serotonin receptor agonists) resulted in reduction in hyperalgesia, evaluated by the Randall-Selitto paw-withdrawal test. In contrast, injection of protein kinase A (PKA) inhibitors either before or after these hyperalgesic agents resulted in reduced hyperalgesia, suggesting that hyperalgesia after its activation was maintained by persistent PKA activity but not by adenylyl cyclase activity. To evaluate further the role of PKA activity in the maintenance of hyperalgesia, we injected the catalytic subunit of PKA (PKACS) that resulted in hyperalgesia similar in magnitude to that induced by the direct-acting hyperalgesic agents but much longer in duration (>48 vs 2 hr). Injection of WIPTIDE (a PKA inhibitor) at 24 hr after PKACS reduced hyperalgesia, suggesting that PKACS hyperalgesia is not independently maintained by steps downstream from PKA. In summary, our results indicate that, once established, inflammatory mediator-induced hyperalgesia is no longer maintained by adenylyl cyclase activity but rather is dependent on ongoing PKA activity. An understanding of the mechanism maintaining hyperalgesia may provide important insight into targets for the treatment of persistent pain.  (+info)

Primary and secondary hyperalgesia in a rat model for human postoperative pain. (5/2095)

BACKGROUND: Previously, the authors developed and characterized a rat model for postoperative pain to learn more about pain produced by incisions. In this study, the responses to heat and mechanical stimuli were evaluated directly on or adjacent to the incision and at varying distances from the incision. METHODS: Rats were anesthetized with halothane and incisions were made at different locations in the plantar aspect of the foot. The response frequency to a blunt mechanical stimulus, the withdrawal threshold to von Frey filaments (15-522 mN), and the withdrawal latency to radiant heat were measured. Rats were tested before surgery, 2 h later, and then daily through postoperative day 9. RESULTS: After plantar incision, persistent hyperalgesia was observed immediately adjacent to or directly on the incision to punctate and blunt mechanical stimuli, respectively. The withdrawal threshold to punctate stimuli applied 1 cm from the incision was decreased through postoperative day 1. In a transitional area, between the distant and adjacent sites, the withdrawal threshold was intermediate and the duration of hyperalgesia was transient. Heat hyperalgesia was persistent but present when the stimulus was applied to the site of injury but not to a distant site. CONCLUSION: Robust primary hyperalgesia to punctate and blunt mechanical stimuli was present. Hyperalgesia distant to the wound, or secondary hyperalgesia, occurred in response to punctate mechanical stimuli, was short-lived, and required greater forces. These results suggest that the most persistent pain behaviors in this model are largely primary hyperalgesia.  (+info)

The novel analgesic compound OT-7100 (5-n-butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimid ine) attenuates mechanical nociceptive responses in animal models of acute and peripheral neuropathic hyperalgesia. (6/2095)

We investigated the effects of OT-7100, a novel analgesic compound (5-n-butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimidi ne), on prostaglandin E2 biosynthesis in vitro, acute hyperalgesia induced by yeast and substance P in rats and hyperalgesia in rats with a chronic constriction injury to the sciatic nerve (Bennett model), which is a model for peripheral neuropathic pain. OT-7100 did not inhibit prostaglandin E2 biosynthesis at 10(-8)-10(-4) M. Single oral doses of 3 and 10 mg/kg OT-7100 were effective on the hyperalgesia induced by yeast. Single oral doses of 0.1, 0.3, 1 and 3 mg/kg OT-7100 were effective on the hyperalgesia induced by substance P in which indomethacin had no effect. Repeated oral administration of OT-7100 (10 and 30 mg/kg) was effective in normalizing the mechanical nociceptive threshold in the injured paw without affecting the nociceptive threshold in the uninjured paw in the Bennett model. Indomethacin had no effect in this model. While amitriptyline (10 and 30 mg/kg) and clonazepam (3 and 10 mg/kg) significantly normalized the nociceptive threshold in the injured paw, they also increased the nociceptive threshold in the uninjured paw. These results suggest that OT-7100 is a new type of analgesic with the effect of normalizing the nociceptive threshold in peripheral neuropathic hyperalgesia.  (+info)

Nitric oxide mediates the central sensitization of primate spinothalamic tract neurons. (7/2095)

Nitric oxide (NO) has been proposed to contribute to the development of hyperalgesia by activating the NO/guanosine 3',5'-cyclic monophosphate (cGMP) signal transduction pathway in the spinal cord. We have examined the effects of NO on the responses of primate spinothalamic tract (STT) neurons to peripheral cutaneous stimuli and on the sensitization of STT cells following intradermal injection of capsaicin. The NO level within the spinal dorsal horn was increased by microdialysis of a NO donor, 3-morpholinosydnonimine (SIN-1). SIN-1 enhanced the responses of STT cells to both weak and strong mechanical stimulation of the skin. This effect was preferentially on deep wide dynamic range STT neurons. The responses of none of the neurons tested to noxious heat stimuli were significantly changed when SIN-1 was administered. Intradermal injection of capsaicin increased dramatically the content of NO metabolites, NO-2/NO-3, within the dorsal horn. This effect was attenuated by pretreatment of the spinal cord with a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). Sensitization of STT cells induced by intradermal injection of capsaicin was also prevented by pretreatment of the dorsal horn with the NOS inhibitors, L-NAME or 7-nitroindazole. Blockade of NOS did not significantly affect the responses of STT cells to peripheral stimulation in the absence of capsaicin injection. The data suggest that NO contributes to the development and maintenance of central sensitization of STT cells and the resultant mechanical hyperalgesia and allodynia after peripheral tissue damage or inflammation. NO seems to play little role in signaling peripheral stimuli under physiological conditions.  (+info)

Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. (8/2095)

Hyperalgesic and nociceptor sensitizing effects mediated by the beta-adrenergic receptor were evaluated in the rat. Intradermal injection of epinephrine, the major endogenous ligand for the beta-adrenergic receptor, into the dorsum of the hindpaw of the rat produced a dose-dependent mechanical hyperalgesia, quantified by the Randall-Selitto paw-withdrawal test. Epinephrine-induced hyperalgesia was attenuated significantly by intradermal pretreatment with propranolol, a beta-adrenergic receptor antagonist, but not by phentolamine, an alpha-adrenergic receptor antagonist. Epinephrine-induced hyperalgesia developed rapidly; it was statistically significant by 2 min after injection, reached a maximum effect within 5 min, and lasted 2 h. Injection of a more beta-adrenergic receptor-selective agonist, isoproterenol, also produced dose-dependent hyperalgesia, which was attenuated by propranolol but not phentolamine. Epinephrine-induced hyperalgesia was not affected by indomethacin, an inhibitor of cyclo-oxygenase, or by surgical sympathectomy. It was attenuated significantly by inhibitors of the adenosine 3',5'-cyclic monophosphate signaling pathway (the adenylyl cyclase inhibitor, SQ 22536, and the protein kinase A inhibitors, Rp-adenosine 3',5'-cyclic monophosphate and WIPTIDE), inhibitors of the protein kinase C signaling pathway (chelerythrine and bisindolylmaleimide) and a mu-opioid receptor agonist DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin). Consistent with the hypothesis that epinephrine produces hyperalgesia by a direct action on primary afferent nociceptors, it was found to sensitize small-diameter dorsal root ganglion neurons in culture, i. e., to produce an increase in number of spikes and a decrease in latency to firing during a ramped depolarizing stimulus. These effects were blocked by propranolol. Furthermore epinephrine, like several other direct-acting hyperalgesic agents, caused a potentiation of tetrodotoxin-resistant sodium current, an effect that was abolished by Rp-adenosine 3',5'-cyclic monophosphate and significantly attenuated by bisindolylmaleimide. Isoproterenol also potentiated tetrodotoxin-resistant sodium current. In conclusion, epinephrine produces cutaneous mechanical hyperalgesia and sensitizes cultured dorsal root ganglion neurons in the absence of nerve injury via an action at a beta-adrenergic receptor. These effects of epinephrine are mediated by both the protein kinase A and protein kinase C second-messenger pathways.  (+info)