Study of the response of a biofilm bacterial community to UV radiation. (1/801)

We have developed a bioluminescent whole-cell biosensor that can be incorporated into biofilm ecosystems. RM4440 is a Pseudomonas aeruginosa FRD1 derivative that carries a plasmid-based recA-luxCDABE fusion. We immobilized RM4440 in an alginate matrix to simulate a biofilm, and we studied its response to UV radiation damage. The biofilm showed a protective property by physical shielding against UV C, UV B, and UV A. Absorption of UV light by the alginate matrix translated into a higher survival rate than observed with planktonic cells at similar input fluences. UV A was shown to be effectively blocked by the biofilm matrix and to have no detectable effects on cells contained in the biofilm. However, in the presence of photosensitizers (i.e., psoralen), UV A was effective in inducing light production and cell death. RM4440 has proved to be a useful tool to study microbial communities in a noninvasive manner.  (+info)

The A modules of the Azotobacter vinelandii mannuronan-C-5-epimerase AlgE1 are sufficient for both epimerization and binding of Ca2+. (2/801)

The industrially important polysaccharide alginate is composed of the two sugar monomers beta-D-mannuronic acid (M) and its epimer alpha-L-guluronic acid (G). In the bacterium Azotobacter vinelandii, the G residues originate from a polymer-level reaction catalyzed by one periplasmic and at least five secreted mannuronan C-5-epimerases. The secreted enzymes are composed of repeats of two protein modules designated A (385 amino acids) and R (153 amino acids). The modular structure of one of the epimerases, AlgE1, is A1R1R2R3A2R4. This enzyme has two catalytic sites for epimerization, each site introducing a different G distribution pattern, and in this article we report the DNA-level construction of a variety of truncated forms of the enzyme. Analyses of the properties of the corresponding proteins showed that an A module alone is sufficient for epimerization and that A1 catalyzed the formation of contiguous stretches of G residues in the polymer, while A2 introduces single G residues. These differences are predicted to strongly affect the physical and immunological properties of the reaction product. The epimerization reaction is Ca2+ dependent, and direct binding studies showed that both the A and R modules bind this cation. The R modules appeared to reduce the Ca2+ concentration needed for full activity and also stimulated the reaction rate when positioned both N and C terminally.  (+info)

Modes of action of five different endopectate lyases from Erwinia chrysanthemi 3937. (3/801)

Five endopectate lyases from the phytopathogenic bacterium Erwinia chrysanthemi, PelA, PelB, PelD, PelI, and PelL, were analyzed with respect to their modes of action on polymeric and oligomeric substrates (degree of polymerization, 2 to 8). On polygalacturonate, PelB showed higher reaction rates than PelD, PelI, and PelA, whereas the reaction rates for PelL were extremely low. The product progression during polygalacturonate cleavage showed a typical depolymerization profile for each enzyme and demonstrated their endolytic character. PelA, PelI, and PelL released oligogalacturonates of different sizes, whereas PelD and PelB released mostly unsaturated dimer and unsaturated trimer, respectively. Upon prolonged incubation, all enzymes degraded the primary products further, to unsaturated dimer and trimer, except for PelL, which degraded the primary products to unsaturated tetramer and pentamer in addition to unsaturated dimer and trimer. The bond cleavage frequencies on oligogalacturonates revealed differences in the modes of action of these enzymes that were commensurate with the product progression profiles. The preferential products formed from the oligogalacturonates were unsaturated dimer for PelD, unsaturated trimer for PelB, and unsaturated tetramer for PelI and PelL. For PelA, preferential products were dependent on the sizes of the oligogalacturonates. Whereas PelB and PelD displayed their highest activities on hexagalacturonate and tetragalacturonate, respectively, PelA, PelI, and PelL were most active on the octamer, the largest substrate used. The bond cleavage frequencies and reaction rates were used to estimate the number of subsites of each enzyme.  (+info)

Biodegradable alginate microspheres as a delivery system for naked DNA. (4/801)

Sodium alginate is a naturally occurring polysaccharide that can easily be polymerized into a solid matrix to form microspheres. These biodegradable microspheres were used to encapsulate plasmid DNA containing the bacterial beta-galactosidase (LacZ) gene under the control of either the cytomegalovirus (CMV) immediate-early promoter or the Rous sarcoma virus (RSV) early promoter. Mice inoculated orally with microspheres containing plasmid DNA expressed LacZ in the intestine, spleen and liver. Inoculation of mice with microspheres containing both the plasmid DNA and bovine adenovirus type 3 (BAd3) resulted in a significant increase in LacZ expression compared to those inoculated with microspheres containing only the plasmid DNA. Our results suggest that adenoviruses are capable of augumenting transgene expression by plasmid DNA both in vitro and in vivo.  (+info)

Salt-resistant alpha-helical cationic antimicrobial peptides. (5/801)

Analogues based on the insect cecropin-bee melittin hybrid peptide (CEME) were studied and analyzed for activity and salt resistance. The new variants were designed to have an increase in amphipathic alpha-helical content (CP29 and CP26) and in overall positive charge (CP26). The alpha-helicity of these peptides was demonstrated by circular dichroism spectroscopy in the presence of liposomes. CP29 was shown to have activity against gram-negative bacteria that was similar to or better than those of the parent peptides, and CP26 had similar activity. CP29 had cytoplasmic membrane permeabilization activity, as assessed by the unmasking of cytoplasmic beta-galactosidase, similar to that of CEME and its more positively charged derivative named CEMA, whereas CP26 was substantially less effective. The activity of the peptides was not greatly attenuated by an uncoupler of membrane potential, carbonyl cyanide-m-chlorophenylhydrazone. The tryptophan residue in position 2 was shown to be necessary for interaction with cell membranes, as demonstrated by a complete lack of activity in the peptide CP208. Peptides CP29, CEME, and CEMA were resistant to antagonism by 0.1 to 0.3 M NaCl; however, CP26 was resistant to antagonism only by up to 160 mM NaCl. The peptides were generally more antagonized by 3 and 5 mM Mg2+ and by the polyanion alginate. It appeared that the positively charged C terminus in CP26 altered its ability to permeabilize the cytoplasmic membrane of Escherichia coli, although CP26 maintained its ability to kill gram-negative bacteria. These peptides are potential candidates for future therapeutic drugs.  (+info)

Atomic levers control pyranose ring conformations. (6/801)

Atomic force microscope manipulations of single polysaccharide molecules have recently expanded conformational chemistry to include force-driven transitions between the chair and boat conformers of the pyranose ring structure. We now expand these observations to include chair inversion, a common phenomenon in the conformational chemistry of six-membered ring molecules. We demonstrate that by stretching single pectin molecules (1 --> 4-linked alpha-D-galactouronic acid polymer), we could change the pyranose ring conformation from a chair to a boat and then to an inverted chair in a clearly resolved two-step conversion: 4C1 right arrow over left arrow boat right arrow over left arrow 1C4. The two-step extension of the distance between the glycosidic oxygen atoms O1 and O4 determined by atomic force microscope manipulations is corroborated by ab initio calculations of the increase in length of the residue vector O1O4 on chair inversion. We postulate that this conformational change results from the torque generated by the glycosidic bonds when a force is applied to the pectin molecule. Hence, the glycosidic bonds act as mechanical levers, driving the conformational transitions of the pyranose ring. When the glycosidic bonds are equatorial (e), the torque is zero, causing no conformational change. However, when the glycosidic bond is axial (a), torque is generated, causing a rotation around C---C bonds and a conformational change. This hypothesis readily predicts the number of transitions observed in pyranose monomers with 1a-4a linkages (two), 1a-4e (one), and 1e-4e (none). Our results demonstrate single-molecule mechanochemistry with the capability of resolving complex conformational transitions.  (+info)

Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. (7/801)

The leading cause of mortality in patients with cystic fibrosis (CF) is respiratory failure due in large part to chronic lung infection with Pseudomonas aeruginosa strains that undergo mucoid conversion, display a biofilm mode of growth in vivo and resist the infiltration of polymorphonuclear leukocytes (PMNs), which release free oxygen radicals such as H2O2. The mucoid phenotype among the strains infecting CF patients indicates overproduction of a linear polysaccharide called alginate. To mimic the inflammatory environment of the CF lung, P. aeruginosa PAO1, a typical non-mucoid strain, was grown in a biofilm. This was treated with low levels of H2O2, as if released by the PMNs, and the formation of mucoid variants was observed. These mucoid variants had mutations in mucA, which encodes an anti-sigma factor; this leads to the deregulation of an alternative sigma factor (sigma22, AlgT or AlgU) required for expression of the alginate biosynthetic operon. All of the mucoid variants tested showed the same mutation, the mucA22 allele, a common allele seen in CF isolates. The mucoid mucA22 variants, when compared to the smooth parent strain PA01, (i) produced 2-6-fold higher levels of alginate, (ii) exhibited no detectable differences in growth rate, (iii) showed an unaltered LPS profile, (iv) were approximately 72% reduced in the amount of inducible-beta-lactamase and (v) secreted little or no LasA protease and only showed 44% elastase activity. A characteristic approximately 54 kDa protein associated with alginate overproducing strains was identified as AlgE (Alg76) by N-terminal sequence analysis. Thus, the common phenotype of the mucoid variants, which included a genetically engineered mucA22 mutant, suggested that the only mutation incurred as a result of H2O2 treatment was in mucA. When a P. aeruginosa biofilm was repeatedly exposed to activated PMNs in vitro, mucoid variants were also observed, mimicking in vivo observations. Thus, PMNs and their oxygen by-products may cause P. aeruginosa to undergo the typical adaptation to the intractable mu- coid form in the CF lung. These findings indicate that gene activation in bacteria by toxic oxygen radicals, similar to that found in plants and mammalian cells, may serve as a defence mechanism for the bacteria. This suggests that mucoid conversion is a response to oxygen radical exposure and that this response is a mechanism of defence by the bacteria. This is the first report to show that PMNs and their oxygen radicals can cause this phenotypic and genotypic change which is so typical of the intractable form of P. aeruginosa in the CF lung. These findings may provide a basis for the development of anti-oxidant and anti-inflammatory therapy for the early stages of infection in CF patients.  (+info)

Transfer and subsequent metabolism of lysolipids studied by immobilizing subcellular compartments in alginate beads. (8/801)

The transfer and subsequent metabolism of lysophosphatidylcholine between subcellular compartments were studied in vitro by embedding membranes in alginate beads. After several experiments to validate the process, it was demonstrated that lysophosphatidylcholine was transferred from microsomes embedded in alginate beads to immobilized chloroplasts, that this transfer involved the partition of this molecule, and that the imported lysophosphatidylcholine was further used as substrate for phosphatidylcholine biosynthesis. More generally, the technique used makes it possible to avoid any cross-contamination between compartments, to evidence a transfer of molecules, and to study the metabolism of the imported molecules in the acceptor compartment.  (+info)