(1/8048) The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance.

The primary routes of insecticide resistance in all insects are alterations in the insecticide target sites or changes in the rate at which the insecticide is detoxified. Three enzyme systems, glutathione S-transferases, esterases and monooxygenases, are involved in the detoxification of the four major insecticide classes. These enzymes act by rapidly metabolizing the insecticide to non-toxic products, or by rapidly binding and very slowly turning over the insecticide (sequestration). In Culex mosquitoes, the most common organophosphate insecticide resistance mechanism is caused by co-amplification of two esterases. The amplified esterases are differentially regulated, with three times more Est beta 2(1) being produced than Est alpha 2(1). Cis-acting regulatory sequences associated with these esterases are under investigation. All the amplified esterases in different Culex species act through sequestration. The rates at which they bind with insecticides are more rapid than those for their non-amplified counterparts in the insecticide-susceptible insects. In contrast, esterase-based organophosphate resistance in Anopheles is invariably based on changes in substrate specificities and increased turnover rates of a small subset of insecticides. The up-regulation of both glutathione S-transferases and monooxygenases in resistant mosquitoes is due to the effects of a single major gene in each case. The products of these major genes up-regulate a broad range of enzymes. The diversity of glutathione S-transferases produced by Anopheles mosquitoes is increased by the splicing of different 5' ends of genes, with a single 3' end, within one class of this enzyme family. The trans-acting regulatory factors responsible for the up-regulation of both the monooxygenase and glutathione S-transferases still need to be identified, but the recent development of molecular tools for positional cloning in Anopheles gambiae now makes this possible.  (+info)

(2/8048) Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer.

Glutathione-S-Transferases (GSTs) comprise a family of isoenzymes that provide protection to mammalian cells against electrophilic metabolites of carcinogens and reactive oxygen species. Previous studies have shown that the CpG-rich promoter region of the pi-class gene GSTP1 is methylated at single restriction sites in the majority of prostate cancers. In order to understand the nature of abnormal methylation of the GSTP1 gene in prostate cancer we undertook a detailed analysis of methylation at 131 CpG sites spanning the promoter and body of the gene. Our results show that DNA methylation is not confined to specific CpG sites in the promoter region of the GSTP1 gene but is extensive throughout the CpG island in prostate cancer cells. Furthermore we found that both alleles are abnormally methylated in this region. In normal prostate tissue, the entire CpG island was unmethylated, but extensive methylation was found outside the island in the body of the gene. Loss of GSTP1 expression correlated with DNA methylation of the CpG island in both prostate cancer cell lines and cancer tissues whereas methylation outside the CpG island in normal prostate tissue appeared to have no effect on gene expression.  (+info)

(3/8048) The abundance of cell cycle regulatory protein Cdc4p is controlled by interactions between its F box and Skp1p.

Posttranslational modification of a protein by ubiquitin usually results in rapid degradation of the ubiquitinated protein by the proteasome. The transfer of ubiquitin to substrate is a multistep process. Cdc4p is a component of a ubiquitin ligase that tethers the ubiquitin-conjugating enzyme Cdc34p to its substrates. Among the domains of Cdc4p that are crucial for function are the F-box, which links Cdc4p to Cdc53p through Skp1p, and the WD-40 repeats, which are required for binding the substrate for Cdc34p. In addition to Cdc4p, other F-box proteins, including Grr1p and Met30p, may similarly act together with Cdc53p and Skp1p to function as ubiquitin ligase complexes. Because the relative abundance of these complexes, known collectively as SCFs, is important for cell viability, we have sought evidence of mechanisms that modulate F-box protein regulation. Here we demonstrate that the abundance of Cdc4p is subject to control by a peptide segment that we term the R-motif (for "reduced abundance"). Furthermore, we show that binding of Skp1p to the F-box of Cdc4p inhibits R-motif-dependent degradation of Cdc4p. These results suggest a general model for control of SCF activities.  (+info)

(4/8048) Physical interaction of the bHLH LYL1 protein and NF-kappaB1 p105.

The LYL1 gene was first identified upon the molecular characterization of the t(7;9)(q35;p13) translocation associated with some human T-cell acute leukemias (T-ALLs). In adult tissues, LYL1 expression is restricted to hematopoietic cells with the notable exclusion of the T cell lineage. LYL1 encodes a basic helix-loop-helix (bHLH) protein highly related to TAL-1, whose activation is also associated with a high proportion of human T-ALLs. A yeast two-hybrid system was used to identify proteins that specifically interact with LYL1 and might mediate its activities. We found that p105, the precursor of NF-kappaB1 p50, was the major LYL1-interacting protein in this system. The association between LYL1 and p105 was confirmed both in vitro and in vivo in mammalian cells. Biochemical studies indicated that the interaction was mediated by the bHLH motif of LYL1 and the ankyrin-like motifs of p105. Ectopic expression of LYL1 in a human T cell line caused a significant decrease in NF-kappaB-dependent transcription, associated with a reduced level of NF-kappaB1 proteins.  (+info)

(5/8048) Co-expression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli.

We describe here an Escherichia coli expression system that produces recombinant proteins enriched in the N-terminal processed form, by using glutathione S-transferase cGSTM1-1 and rGSTT1-1 as models, where c and r refer to chick and rat respectively. Approximately 90% of the cGSTM1-1 or rGSTT1-1 overexpressed in E. coli under the control of a phoA promoter retained the initiator methionine residue that was absent from the mature isoenzymes isolated from tissues. The amount of initiator methionine was decreased to 40% of the expressed cGSTM1-1 when the isoenzyme was co-expressed with an exogenous methionine aminopeptidase gene under the control of a separate phoA promoter. The recombinant proteins expressed were mainly methionine aminopeptidase. The yield of cGSTM1-1 was decreased to 10% of that expressed in the absence of the exogenous methionine aminopeptidase gene. By replacing the phoA with its natural promoter, the expression of methionine aminopeptidase decreased drastically. The yield of the co-expressed cGSTM1-1 was approx. 60% of that in the absence of the exogenous methionine aminopeptidase gene; approx. 65% of the initiator methionine residues were removed from the enzyme. Under similar conditions, N-terminal processing was observed in approx. 70% of the recombinant rGSTT1-1 expressed. By increasing the concentration of phosphate in the growth medium, the amount of initiator methionine on cGSTM1-1 was decreased to 14% of the overexpressed isoenzymes, whereas no further improvement could be observed for rGSTT1-1. The initiator methionine residue does not affect the enzymic activities of either cGSTM1-1 or rGSTT1-1. However, the epoxidase activity and the 4-nitrobenzyl chloride-conjugating activity of the purified recombinant rGSTT1-1 are markedly higher that those reported recently for the same isoenzyme isolated from rat livers.  (+info)

(6/8048) Oval cell numbers in human chronic liver diseases are directly related to disease severity.

The risk of developing hepatocellular carcinoma is significantly increased in patients with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C infection. The precise mechanisms underlying the development of hepatocellular carcinoma in these conditions are not well understood. Stem cells within the liver, termed oval cells, are involved in the pathogenesis of hepatocellular carcinoma in animal models and may be important in the development of hepatocellular carcinoma in human chronic liver diseases. The aims of this study were to determine whether oval cells could be detected in the liver of patients with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C, and whether there is a relationship between the severity of the liver disease and the number of oval cells. Oval cells were detected using histology and immunohistochemistry in liver biopsies from patients with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C. Oval cells were not observed in normal liver controls. Oval cell numbers increased significantly with the progression of disease severity from mild to severe in each of the diseases studied. We conclude that oval cells are frequently found in subjects with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C. There is an association between severity of liver disease and increase in the number of oval cells consistent with the hypothesis that oval cell proliferation is associated with increased risk for development of hepatocellular carcinoma in chronic liver disease.  (+info)

(7/8048) Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms.

Although acute lymphoblastic leukemia (ALL) is the most common childhood cancer, factors governing susceptibility to this disease have not yet been identified. As such, ALL offers a useful opportunity to examine the glutathione S-transferase and cytochrome P450 genes in determining susceptibility to pediatric cancers. Both enzymes are involved in carcinogen metabolism and have been shown to influence the risk a variety of solid tumors in adults. To determine whether these genes played a similar role in childhood leukemogenesis, we compared the allele frequencies of 177 childhood ALL patients and 304 controls for the CYP1A1, CYP2D6, GSTM1, and GSTT1 genes. We chose the French population of Quebec as our study population because of its relative genetic homogeneity. The GSTM1 null and CYP1A1*2A genotypes were both found to be significant predictors of ALL risk (odds ratio [OR] = 1.8). Those possessing both genotypes were at an even greater risk of developing the disease (OR = 3.3). None of the other alleles tested for proved to be significant indicators of ALL risk. Unexpectedly, girls carrying the CYP1A1*4 were significantly underrepresented in the ALL group (OR = 0.2), suggesting that a gender-specific protective role exists for this allele. These results suggest that the risk of ALL may indeed be associated with xenobiotics-metabolism, and thus with environmental exposures. Our findings may also explain, in part, why ALL is more prevalent among males than females.  (+info)

(8/8048) Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes.

Comparing patterns of gene expression in cell lines and tissues has important applications in a variety of biological systems. In this study we have examined whether the emerging technology of cDNA microarrays will allow a high throughput analysis of expression of cDNA clones generated by suppression subtractive hybridization (SSH). A set of cDNA clones including 332 SSH inserts amplified by PCR was arrayed using robotic printing. The cDNA arrays were hybridized with fluorescent labeled probes prepared from RNA from ER-positive (MCF7 and T47D) and ER-negative (MDA-MB-231 and HBL-100) breast cancer cell lines. Ten clones were identified that were over-expressed by at least a factor of five in the ER-positive cell lines. Northern blot analysis confirmed over-expression of these 10 cDNAs. Sequence analysis identified four of these clones as cytokeratin 19, GATA-3, CD24 and glutathione-S-transferase mu-3. Of the remaining six cDNA clones, four clones matched EST sequences from two different genes and two clones were novel sequences. Flow cytometry and immunofluorescence confirmed that CD24 protein was over-expressed in the ER-positive cell lines. We conclude that SSH and microarray technology can be successfully applied to identify differentially expressed genes. This approach allowed the identification of differentially expressed genes without the need to obtain previously cloned cDNAs.  (+info)