Global warming is changing the dynamics of Arctic host-parasite systems. (1/239)

Global climate change is altering the ecology of infectious agents and driving the emergence of disease in people, domestic animals, and wildlife. We present a novel, empirically based, predictive model for the impact of climate warming on development rates and availability of an important parasitic nematode of muskoxen in the Canadian Arctic, a region that is particularly vulnerable to climate change. Using this model, we show that warming in the Arctic may have already radically altered the transmission dynamics of this parasite, escalating infection pressure for muskoxen, and that this trend is expected to continue. This work establishes a foundation for understanding responses to climate change of other host-parasite systems, in the Arctic and globally.  (+info)

Reproductive phase locking of mosquito populations in response to rainfall frequency. (2/239)

The frequency of moderate to heavy rainfall events is projected to change in response to global warming. Here we show that these hydrologic changes may have a profound effect on mosquito population dynamics and rates of mosquito-borne disease transmission. We develop a simple model, which treats the mosquito reproductive cycle as a phase oscillator that responds to rainfall frequency forcing. This model reproduces observed mosquito population dynamics and indicates that mosquito-borne disease transmission can be sensitive to rainfall frequency. These findings indicate that changes to the hydrologic cycle, in particular the frequency of moderate to heavy rainfall events, could have a profound effect on the transmission rates of some mosquito-borne diseases.  (+info)

Temperature, temperature extremes, and mortality: a study of acclimatisation and effect modification in 50 US cities. (3/239)

OBJECTIVES: The authors examined the increase in mortality associated with hot and cold temperature in different locations, the determinants of the variability in effect estimates, and its implications for adaptation. METHODS: The authors conducted a case-crossover study in 50 US cities. They used daily mortality and weather data for 6 513 330 deaths occurring during 1989-2000. Exposure was assessed using two approaches. First, the authors determined exposure to extreme temperatures using city-specific indicator variables based on the local temperature distribution. Secondly, they used piecewise linear variables to assess exposure to temperature on a continuous scale above/below a threshold. Effects of hot and cold temperature were examined in season-specific models. In a meta-analysis of the city-specific results, the authors examined several city characteristics as effect modifiers. RESULTS: Mortality increases associated with both extreme cold (2-day cumulative increase 1.59% (95% CI 0.56 to 2.63)) and extreme heat (5.74% (95% CI 3.38 to 8.15)) were found, the former being especially marked for myocardial infarction and cardiac arrest deaths. The increase in mortality was less marked at less extreme temperatures. The effect of extreme cold (defined as a percentile) was homogeneous across cities with different climates, suggesting that only the unusualness of the cold temperature (and not its absolute value) had a substantial impact on mortality (that is, acclimatisation to cold). Conversely, heat effects were quite heterogeneous, with the largest effects observed in cities with milder summers, less air conditioning and higher population density. Adjustment for ozone led to similar results, but some residual confounding could be present due to other uncontrolled pollutants. CONCLUSIONS: The authors confirmed in a large sample of cities that both cold and hot temperatures increase mortality risk. These findings suggest that increases in heat-related mortality due to global warming are unlikely to be compensated for by decreases in cold-related mortality and that population acclimatisation to heat is still incomplete.  (+info)

El Nino/Southern Oscillation response to global warming. (4/239)

 (+info)

Global warming and Bergmann's rule: do central European passerines adjust their body size to rising temperatures? (5/239)

 (+info)

Influence of environmental factors on the presence of Vibrio cholerae in the marine environment: a climate link. (6/239)

Evidence indicates that the atmospheric and oceanic processes that occur in response to increased greenhouse gases in the broad-scale climate system may already be changing the ecology of infectious diseases. Recent studies have shown that climate also influences the abundance and ecology of pathogens, and the links between pathogens and changing ocean conditions, including human diseases such as cholera. Vibrio cholerae is well recognized as being responsible for significant mortality and economic loss in developing countries, most often centered in tropical areas of the world. Within the marine environment, V. cholerae is found attached to surfaces provided by plants, filamentous green algae, copepods, crustaceans, and insects. The specific environmental changes that amplified plankton and associated bacterial proliferation and govern the location and timing of plankton blooms have been elucidated. Several studies have demonstrated that environmental non-O1 and non-O139 V. cholerae strains and V. cholerae O1 El Tor and O139 are able to form a three-dimensional biofilm on surfaces which provides a microenvironment, facilitating environmental persistence within natural aquatic habitats during interepidemic periods. Revealing the influence of climatic/environmental factors in seasonal patterns is critical to understanding temporal variability of cholera at longer time scales to improve disease forecasting. From an applied perspective, clarifying the mechanisms that link seasonal environmental changes to diseases' dynamics will aid in developing strategies for controlling diseases across a range of human and natural systems.  (+info)

Trophic amplification of climate warming. (7/239)

 (+info)

Preventing heat-related morbidity and mortality: new approaches in a changing climate. (8/239)

 (+info)