Human gamma band activity and perception of a gestalt. (1/34)

Neuronal oscillations in the gamma band (above 30 Hz) have been proposed to be a possible mechanism for the visual representation of objects. The present study examined the topography of gamma band spectral power and event-related potentials in human EEG associated with perceptual switching effected by rotating ambiguous (bistable) figures. Eleven healthy human subjects were presented two rotating bistable figures: first, a face figure that allowed perception of a sad or happy face depending on orientation and therefore caused a perceptual switch at defined points in time when rotated, and, second, a modified version of the Rubin vase, allowing perception as a vase or two faces whereby the switch was orientation-independent. Nonrotating figures served as further control stimuli. EEG was recorded using a high-density array with 128 electrodes. We found a negative event-related potential associated with the switching of the sad-happy figure, which was most pronounced at central prefrontal sites. Gamma band activity (GBA) was enhanced at occipital electrode sites in the rotating bistable figures compared with the standing stimuli, being maximal at vertical stimulus orientations that allowed an easy recognition of the sad and happy face or the vase-faces, respectively. At anterior electrodes, GBA showed a complementary pattern, being maximal when stimuli were oriented horizontally. The findings support the notion that formation of a visual percept may involve oscillations in a distributed neuronal assembly.  (+info)

Detecting collinear dots in noise. (2/34)

We estimated the sensitivity for detecting a row of collinear target elements (usually dots) by measuring the maximum density of randomly positioned noise elements that allowed 75% correct detection of the orientation of alignment (binary choice: horizontal versus vertical) of the target elements. We varied the number of target elements, their mode of generation, and their accuracy of positioning. As reported previously (Moulden (1994) Higher-order processing in the visual system. Ciba Foundation Symposium 184. Chichester: Wiley), target detection improved rapidly until the number of target elements reached about seven, and then improved more slowly beyond this point. However, this break was reduced (and often removed entirely) when the target array was formed by repositioning pre-existing noise elements lying close to the target location, rather than by superimposition of additional target elements onto the noise array. This almost linear slope of improvement, coupled with the observation that target detection was disrupted more by random jitter of target elements at right angles to their axis of alignment than by jittering along this axis, argues against a two-stage process of perceptual grouping (Moulden, 1994) and supports instead an explanation based on the operation of a single mechanism. This single mechanism explanation is further supported by the observation that intrinsic positional uncertainty (estimated from the results of jitter experiments) was independent of target element number. Additional experiments showed that target detection is facilitated by aperiodic noise dots that fall close to the target axis. The results are discussed in relation to alternative explanations of perceptual grouping.  (+info)

Object memory effects on figure assignment: conscious object recognition is not necessary or sufficient. (3/34)

In three experiments we investigated whether conscious object recognition is necessary or sufficient for effects of object memories on figure assignment. In experiment 1, we examined a brain-damaged participant, AD, whose conscious object recognition is severely impaired. AD's responses about figure assignment do reveal effects from memories of object structure, indicating that conscious object recognition is not necessary for these effects, and identifying the figure-ground test employed here as a new implicit test of access to memories of object structure. In experiments 2 and 3, we tested a second brain-damaged participant, WG, for whom conscious object recognition was relatively spared. Nevertheless, effects from memories of object structure on figure assignment were not evident in WG's responses about figure assignment in experiment 2, indicating that conscious object recognition is not sufficient for effects of object memories on figure assignment. WG's performance sheds light on AD's performance, and has implications for the theoretical understanding of object memory effects on figure assignment.  (+info)

Grouping visual features during binocular rivalry. (4/34)

During binocular rivalry, portions of one eye's view may be perceptually dominant while other portions are suppressed; at any given moment, overall dominance often resembles a patchwork mixture of the two eyes' views. This study investigates the potency of two Gestalt grouping cues--good continuation and common fate--to promote synchronous fluctuations in dominance of two, spatially separated rival targets. Two grating patches were presented to the left eye paired dichoptically with random-dot patches presented to corresponding right eye locations. The orientations of the two gratings were either collinear, parallel or orthogonal. Gratings underwent contrast modulations that were either correlated (identical contrast changes) or uncorrelated (independent contrast changes). Over 60 s trials, observers pressed one key when the left grating predominated, another when the right grating predominated and both keys when both were concurrently visible. Correlated contrast modulation promoted joint grating predominance relative to the uncorrelated conditions, an effect strongest for collinear gratings. Joint predominance depended strongly on the angular separation between gratings and the temporal phase-lag in contrast modulations. These findings may reflect neural interactions subserved by lateral connections between cortical hypercolumns.  (+info)

Phi is not beta, and why Wertheimer's discovery launched the Gestalt revolution. (5/34)

Max Wertheimer (1880-1943), the founder of the Gestalt School of Psychology, published a monograph on the perception of apparent motion in 1912, which initiated a new direction for a great deal of subsequent perceptual theory and research. Wertheimer's research was inspired by a serendipitous observation of a pure apparent movement, which he called the phi-phenomenon to distinguish it from optimal apparent movement (beta), which resembles real movement. Wertheimer called his novel observation 'pure' because it was perceived in the absence of any object being seen to change its position in space. The phi-phenomenon, as well as the best conditions for seeing it, were not described clearly in this monograph, leading to considerable subsequent confusion about its appearance and occurrence. We review the history leading to the discovery of the phi-phenomenon, and then describe: (i) a likely source for the confusion evident in most contemporary research on the phi-phenomenon; (ii) the best conditions for seeing the phi-phenomenon; (iii) new conditions that provide a particularly vivid phi-phenomenon; and (iv) two lines of thought that may provide explanations of the phi-phenomenon and also distinguish phi from beta.  (+info)

On a common circle: natural scenes and Gestalt rules. (6/34)

To understand how the human visual system analyzes images, it is essential to know the structure of the visual environment. In particular, natural images display consistent statistical properties that distinguish them from random luminance distributions. We have studied the geometric regularities of oriented elements (edges or line segments) present in an ensemble of visual scenes, asking how much information the presence of a segment in a particular location of the visual scene carries about the presence of a second segment at different relative positions and orientations. We observed strong long-range correlations in the distribution of oriented segments that extend over the whole visual field. We further show that a very simple geometric rule, cocircularity, predicts the arrangement of segments in natural scenes, and that different geometrical arrangements show relevant differences in their scaling properties. Our results show similarities to geometric features of previous physiological and psychophysical studies. We discuss the implications of these findings for theories of early vision.  (+info)

Edge co-occurrence in natural images predicts contour grouping performance. (7/34)

The human brain manages to correctly interpret almost every visual image it receives from the environment. Underlying this ability are contour grouping mechanisms that appropriately link local edge elements into global contours. Although a general view of how the brain achieves effective contour grouping has emerged, there have been a number of different specific proposals and few successes at quantitatively predicting performance. These previous proposals have been developed largely by intuition and computational trial and error. A more principled approach is to begin with an examination of the statistical properties of contours that exist in natural images, because it is these statistics that drove the evolution of the grouping mechanisms. Here we report measurements of both absolute and Bayesian edge co-occurrence statistics in natural images, as well as human performance for detecting natural-shaped contours in complex backgrounds. We find that contour detection performance is quantitatively predicted by a local grouping rule derived directly from the co-occurrence statistics, in combination with a very simple integration rule (a transitivity rule) that links the locally grouped contour elements into longer contours.  (+info)

How to use a gestalt interpretation for ventilation-perfusion lung scintigraphy. (8/34)

The use of a so-called gestalt interpretation, an integration of different sets of criteria and the physician's own experience, has been advocated in the interpretation of lung scintigraphs of patients with clinically suspected pulmonary embolism. However, data on the reliability of this approach are limited. The aim of this study was to investigate the observer variability and accuracy of the gestalt interpretation of perfusion scintigraphy (combined with chest radiography) as well as the impact of adding ventilation scintigraphy and clinical pretest information. METHODS: Three experienced observers independently reviewed the chest radiograph and ventilation-perfusion scans of 101 consecutive patients with clinically suspected pulmonary embolism. All datasets were reviewed twice by each observer, using a visual analog scale to indicate the estimated probability of pulmonary embolism. The results of the gestalt interpretations were analyzed against the presence or absence of pulmonary embolism. RESULTS: All 3 gestalt interpretations had a good-to-excellent interobserver variability (intraclass correlation coefficient [ICC], 0.73-0.89), with similar intraobserver agreement (ICC, 0.76-0.95). The performance of all 3 readers was comparable. The areas under the curve (AUCs) of all 3 observers were high and similar (for observer 1, the AUCs were 0.96 [95% confidence interval (CI)], 0.93-1.00), 0.96 (95% CI, 0.93-1.00), and 0.95 (95% CI, 0.90-1.00), respectively, for the 3 gestalt interpretations). CONCLUSION: A gestalt interpretation is a useful classification scheme with good-to-excellent intra- and interobserver variability. However, the interpretation and the consequences of this result are dependent on the observer. Unexpectedly, the addition of information on ventilation scintigraphy and clinical information did not affect the overall assessment.  (+info)