(1/18964) Enzymes and reproduction in natural populations of Drosophila euronotus.

Populations of Drosophila euronotus, one from southern Louisiana )3 samples), and one from Missouri (2 samples), were classified for allele frequencies at alkaline phosphatase (APH) and acid phosphatase (ACPH) loci. The two populations differed consistently in allele frequencies at both loci. The APH locus is on the inversion-free X chromosome; the chromosomal locus of the autosomal ACPH is unknown, and could involve inversion polymorphism. Wild females from Missouri and Louisiana populations heterozygous at the APH locus carried more sperm at capture than did the corresponding homozygotes. This heterotic association was significant for the combined samples, and whether it was the result of heterosis at the enzyme locus studied, or due to geographically widespread close linkage with other heterotic loci, it should help to maintain heterozygosity at the APH locus. In a Louisiana collection which included large numbers of sperm-free females, simultaneous homozygosity at both enzyme loci was significantly associated with lack of sperm. It is suggested that the latter association is the result of young heterozygous females achieving sexual maturity earlier than do the double homozygotes. The average effective sperm load for 225 wild females was only 29.4, suggesting the necessity for frequent repeat-mating in nature to maintain female fertility. A comparison of the sex-linked APH genotypes of wild females with those of their daughters indicated that among 295 wild-inseminated females from five populations, 35% had mated more than once, and of this 35%, six females had mated at least three times. Because of ascertainment difficulties, it is clear that the true frequency of multiple-mating in nature must have been much higher than the observed 35%. Laboratory studies indicate that multiple-mating in this species does not involve sperm displacement, possibly due to the small number of sperms transmitted per mating, and the fact that the sperm receptacles are only partially filled by a given mating.  (+info)

(2/18964) Marker effects on reversion of T4rII mutants.

The frequencies of 2-aminopurine- and 5-bromouracil-induced A:T leads to G:C transitions were compared at nonsense sites throughout the rII region of bacteriophage T4. These frequencies are influenced both by adjacent base pairs within the nonsense codons and by extracodonic factors. Following 2AP treatment, they are high in amber (UAG) and lower in opal (UGA) codons than in allelic ochre (UAA) codons. In general, 5BU-induced transitions are more frequent in both amber and opal codons than in the allelic ochre codons. 2AP- and 5BU-induced transition frequencies in the first and third positions of opal codons are correlated with those in the corresponding positions of the allelic ochre codons. Similarly, the frequencies of 2AP-induced transition in the first and second positions of amber codons and their ochre alleles are correlated. However, there is little correlation between the frequencies of 5BU-induced transitions in the first and second positions of allelic amber and ochre codons.  (+info)

(3/18964) Mapping of the homothallic genes, HM alpha and HMa, in Saccharomyces yeasts.

Two of the three homothallic genes, HM alpha and HMa, showed direct linkage to the mating-type locus at approximately 73 and 98 strans (57 and 65 centimorgans [cM], respectively, whereas, the other, HO, showed no linkage to 25 standard markers distributed over 17 chromosomes including the mating-type locus. To determine whether the HM alpha and HMa loci located on the left or right side of the mating-type locus, equations for three factor analysis of three linked genes were derived. Tetrad data were collected and were compared with expected values by chi 2 statistics. Calculations indicated that the HM alpha gene is probably located on the right arm at 95 strans (65 cM) from the centromere and the HMa locus at approximately 90 strans (64 cM) on the left arm of chromosome III.  (+info)

(4/18964) Insect evolution: Redesigning the fruitfly.

Homeotic mutations in Drosophila can result in dramatic phenotypes that suggest the possibility for rapid morphological evolution, but dissection of the genetic pathway downstream of Ultrabithorax is beginning to reveal how wing morphology may have evolved by more gradual transformations.  (+info)

(5/18964) The Genexpress IMAGE knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics.

Expression profiles of 5058 human gene transcripts represented by an array of 7451 clones from the first IMAGE Consortium cDNA library from infant brain have been collected by semiquantitative hybridization of the array with complex probes derived by reverse transcription of mRNA from brain and five other human tissues. Twenty-one percent of the clones corresponded to transcripts that could be classified in general categories of low, moderate, or high abundance. These expression profiles were integrated with cDNA clone and sequence clustering and gene mapping information from an upgraded version of the Genexpress Index. For seven gene transcripts found to be transcribed preferentially or specifically in brain, the expression profiles were confirmed by Northern blot analyses of mRNA from eight adult and four fetal tissues, and 15 distinct regions of brain. In four instances, further documentation of the sites of expression was obtained by in situ hybridization of rat-brain tissue sections. A systematic effort was undertaken to further integrate available cytogenetic, genetic, physical, and genic map informations through radiation-hybrid mapping to provide a unique validated map location for each of these genes in relation to the disease map. The resulting Genexpress IMAGE Knowledge Base is illustrated by five examples presented in the printed article with additional data available on a dedicated Web site at the address http://idefix.upr420.vjf.cnrs.fr/EXPR++ +/ welcome.html.  (+info)

(6/18964) Inhibition of cellular growth by increased guanine nucleotide pools. Characterization of an Escherichia coli mutant with a guanosine kinase that is insensitive to feedback inhibition by GTP.

In Escherichia coli the enzyme guanosine kinase phosphorylates guanosine to GMP, which is further phosphorylated to GDP and GTP by other enzymes. Here I report that guanosine kinase is subject to efficient feedback inhibition by the end product of the pathway, GTP, and that this regulation is abolished by a previously described mutation, gsk-3, in the structural gene for guanosine kinase (Hove-Jensen, B., and Nygaard, P. (1989) J. Gen. Microbiol. 135, 1263-1273). Consequently, the gsk-3 mutant strain was extremely sensitive to guanosine, which caused the guanine nucleotide pools to increase dramatically, thereby initiating a cascade of metabolic changes that eventually led to growth arrest. By isolation and characterization of guanosine-resistant derivatives of the gsk-3 mutant, some of the crucial steps in this deleterious cascade of events were found to include the following: first, conversion of GMP to adenine nucleotides via GMP reductase, encoded by the guaC gene; second, inhibition of phosphoribosylpyrophosphate synthetase by an adenine nucleotide, presumably ADP, causing starvation for histidine, tryptophan, and pyrimidines, all of which require PRPP for their synthesis; third, accumulation of the regulatory nucleotide guanosine 5',3'-bispyrophosphate (ppGpp), a general transcriptional inhibitor synthesized by the relA gene product in response to amino acid starvation.  (+info)

(7/18964) Linkage relations of locus for X-borne type of Charcot-Marie-Tooth muscular atrophy and that for Xg blood groups.

The locus for the X-borne type of Charcot-Marie-Tooth muscular atrophy is not close to the Xg locus and probably not within direct measurable distance of it.  (+info)

(8/18964) Two-gene control of the expression of a murine Ia antigen.

Two dimensional polyacrylamide gel electrophoresis of Non-Idet P-40 extracts and of specific Ia immunoprecipitates from [35S]methionine-labeled mouse spleen lymphocytes has revealed that the cell surface expression of some Ia antigens appears to be controlled by two genes. One locus, which maps in the I-A subregion, is probably the structural gene for an Ia polypeptide chain. The second locus, which maps between the I-J and H-2D regions, controls whether this I-A encoded molecule (Ae) remains in the cytoplasm or is modified and expressed on the cell surface. Complementation between these two loci allowing surface expression of Ae can occur in the cis or trans chromosomal position. Both the I-A molecule and a polypeptide chain coded for by a locus in I-E are coprecipitated by anti-I-E antibodies, suggesting that these two chains are associated with each other as a multisubunit complex in the cell. Because the ability to complement I-A for Ae expression is a property only of those strains which synthesize an I-E-encoded protein, it is likely that the I-E product itself is regulating the expression of Ae. These observations suggest several mechanisms by which interaction between two I region loci can generate new cell surface molecules. As a result, they may have important implications for understanding the molecular basis of two gene control of immune responsiveness and immune suppression.  (+info)