(1/7142) GABAergic excitatory synapses and electrical coupling sustain prolonged discharges in the prey capture neural network of Clione limacina.

Afterdischarges represent a prominent characteristic of the neural network that controls prey capture reactions in the carnivorous mollusc Clione limacina. Their main functional implication is transformation of a brief sensory input from a prey into a lasting prey capture response. The present study, which focuses on the neuronal mechanisms of afterdischarges, demonstrates that a single pair of interneurons [cerebral A interneuron (Cr-Aint)] is responsible for afterdischarge generation in the network. Cr-Aint neurons are electrically coupled to all other neurons in the network and produce slow excitatory synaptic inputs to them. This excitatory transmission is found to be GABAergic, which is demonstrated by the use of GABA antagonists, uptake inhibitors, and double-labeling experiments showing that Cr-Aint neurons are GABA-immunoreactive. The Cr-Aint neurons organize three different pathways in the prey capture network, which provide positive feedback necessary for sustaining prolonged spike activity. The first pathway includes electrical coupling and slow chemical transmission from the Cr-Aint neurons to all other neurons in the network. The second feedback is based on excitatory reciprocal connections between contralateral interneurons. Recurrent excitation via the contralateral cell can sustain prolonged interneuron firing, which then drives the activity of all other cells in the network. The third positive feedback is represented by prominent afterdepolarizing potentials after individual spikes in the Cr-Aint neurons. Afterdepolarizations apparently represent recurrent GABAergic excitatory inputs. It is suggested here that these afterdepolarizing potentials are produced by GABAergic excitatory autapses.  (+info)

(2/7142) Descriptive analysis of eating regulation in obese and nonobese children.

Bite rate, sip rate, and concurrent activities of six 7-yr-old children, three obese and three nonobese, were observed at lunchtime over a six-month period. A procedure for decreasing bite rate, putting eating utensils down between bites, was implemented in a multiple-baseline across-subjects design. Sip rates and concurrent activities were observed to assess behavioral covariations. In addition, bite rate and amount of food completed were computed over six food categories to analyze food preferences. Results indicated the control of bite rate acorss all subjects, with a significant reduction in amount of food consumed. Correlations between the response classes indicated they were at least partially independent. Differences in eating behavior of obese and nonobese subjects were observed for breadstuffs and milk drinking.  (+info)

(3/7142) Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice.

Dopamine-deficient mice (DA-/- ), lacking tyrosine hydroxylase (TH) in dopaminergic neurons, become hypoactive and aphagic and die by 4 weeks of age. They are rescued by daily treatment with L-3,4-dihydroxyphenylalanine (L-DOPA); each dose restores dopamine (DA) and feeding for less than 24 hr. Recombinant adeno-associated viruses expressing human TH or GTP cyclohydrolase 1 (GTPCH1) were injected into the striatum of DA-/- mice. Bilateral coinjection of both viruses restored feeding behavior for several months. However, locomotor activity and coordination were partially improved. A virus expressing only TH was less effective, and one expressing GTPCH1 alone was ineffective. TH immunoreactivity and DA were detected in the ventral striatum and adjacent posterior regions of rescued mice, suggesting that these regions mediate a critical DA-dependent aspect of feeding behavior.  (+info)

(4/7142) C-PR neuron of Aplysia has differential effects on "Feeding" cerebral interneurons, including myomodulin-positive CBI-12.

Head lifting and other aspects of the appetitive central motive state that precedes consummatory feeding movements in Aplysia is promoted by excitation of the C-PR neuron. Food stimuli activate C-PR as well as a small population of cerebral-buccal interneurons (CBIs). We wished to determine if firing of C-PR produced differential effects on the various CBIs or perhaps affected all the CBIs uniformly as might be expected for a neuron involved in producing a broad undifferentiated arousal state. We found that when C-PR was fired, it produced a wide variety of effects on various CBIs. Firing of C-PR evoked excitatory input to a newly identified CBI (CBI-12) the soma of which is located in the M cluster near the previously identified CBI-2. CBI-12 shares certain properties with CBI-2, including a similar morphology and a capacity to drive rhythmic activity of the buccal-ganglion. Unlike CBI-2, CBI-12 exhibits myomodulin immunoreactivity. Furthermore when C-PR is fired, CBI-12 receives a polysynaptic voltage-dependent slow excitation, whereas, CBI-2 receives relatively little input. C-PR also polysynaptically excites other CBIs including CBI-1 and CBI-8/9 but produces inhibition in CBI-3. In addition, firing of C-PR inhibits plateau potentials in CBI-5/6. The data suggest that activity of C-PR may promote the activity of one subset of cerebral-buccal interneurons, perhaps those involved in ingestive behaviors that occur during the head-up posture. C-PR also inhibits some cerebral-buccal interneurons that may be involved in behaviors in which C-PR activity is not required or may even interfere with other feeding behaviors such as rejection or grazing, that occur with the head down.  (+info)

(5/7142) In vitro analog of operant conditioning in aplysia. I. Contingent reinforcement modifies the functional dynamics of an identified neuron.

Previously, an analog of operant conditioning in Aplysia was developed using the rhythmic motor activity in the isolated buccal ganglia. This analog expressed a key feature of operant conditioning, namely a selective enhancement in the occurrence of a designated motor pattern by contingent reinforcement. Different motor patterns generated by the buccal central pattern generator were induced by monotonic stimulation of a peripheral nerve (i.e., n.2,3). Phasic stimulation of the esophageal nerve (E n.) was used as an analog of reinforcement. The present study investigated the neuronal mechanisms associated with the genesis of different motor patterns and their modifications by contingent reinforcement. The genesis of different motor patterns was related to changes in the functional states of the pre-motor neuron B51. During rhythmic activity, B51 dynamically switched between inactive and active states. Bursting activity in B51 was associated with, and predicted, characteristic features of a specific motor pattern (i.e., pattern I). Contingent reinforcement of pattern I modified the dynamical properties of B51 by decreasing its resting conductance and threshold for eliciting plateau potentials and thus increased the occurrences of pattern I-related activity in B51. These modifications were not observed in preparations that received either noncontingent reinforcement (i.e., yoke control) or no reinforcement (i.e., control). These results suggest that a contingent reinforcement paradigm can regulate the dynamics of neuronal activity that is centrally programmed by the intrinsic cellular properties of neurons.  (+info)

(6/7142) Mechanisms of arthropod transmission of plant and animal viruses.

A majority of the plant-infecting viruses and many of the animal-infecting viruses are dependent upon arthropod vectors for transmission between hosts and/or as alternative hosts. The viruses have evolved specific associations with their vectors, and we are beginning to understand the underlying mechanisms that regulate the virus transmission process. A majority of plant viruses are carried on the cuticle lining of a vector's mouthparts or foregut. This initially appeared to be simple mechanical contamination, but it is now known to be a biologically complex interaction between specific virus proteins and as yet unidentified vector cuticle-associated compounds. Numerous other plant viruses and the majority of animal viruses are carried within the body of the vector. These viruses have evolved specific mechanisms to enable them to be transported through multiple tissues and to evade vector defenses. In response, vector species have evolved so that not all individuals within a species are susceptible to virus infection or can serve as a competent vector. Not only are the virus components of the transmission process being identified, but also the genetic and physiological components of the vectors which determine their ability to be used successfully by the virus are being elucidated. The mechanisms of arthropod-virus associations are many and complex, but common themes are beginning to emerge which may allow the development of novel strategies to ultimately control epidemics caused by arthropod-borne viruses.  (+info)

(7/7142) Lateral hypothalamic NMDA receptor subunits NR2A and/or NR2B mediate eating: immunochemical/behavioral evidence.

Cells within the lateral hypothalamic area (LHA) are important in eating control. Glutamate or its analogs, kainic acid (KA) and N-methyl-D-aspartate (NMDA), elicit intense eating when microinjected there, and, conversely, LHA-administered NMDA receptor antagonists suppress deprivation- and NMDA-elicited eating. The subunit composition of LHA NMDA receptors (NMDA-Rs) mediating feeding, however, has not yet been determined. Identifying this is important, because distinct second messengers/modulators may be activated by NMDA-Rs with differing compositions. To begin to address this, we detected LHA NR2A and NR2B subunits by immunoblotting and NR2B subunits by immunohistochemistry using subunit-specific antibodies. To help determine whether NMDA-Rs mediating feeding might contain these subunits, we conducted behavioral studies using LHA-administered ifenprodil, an antagonist selective for NR2A- and/or NR2B-containing NMDA-Rs at the doses we used (0.001-100 nmol). Ifenprodil maximally suppressed NMDA- and deprivation-elicited feeding by 63 and 39%, respectively, but failed to suppress KA-elicited eating, suggesting its actions were behaviorally specific. Collectively, these results suggest that LHA NMDA-Rs, some of which contribute to feeding control, are composed of NR2A and/or NR2B subunits, and implicate NR2A- and/or NR2B-linked signal transduction in feeding behavior.  (+info)

(8/7142) Variation in oral susceptibility to dengue type 2 virus of populations of Aedes aegypti from the islands of Tahiti and Moorea, French Polynesia.

Twenty three samples of Aedes aegypti populations from the islands of Tahiti and Moorea (French Polynesia) were tested for their oral susceptibility to dengue type 2 virus. The high infection rates obtained suggest that the artificial feeding protocol used was more efficient than those previously described. Statistical analysis of the results allowed us to define two distinct geographic areas on Tahiti with respect to the susceptibility of Ae. aegypti: the east coast, with homogeneous infection rates, and the west coast, with heterogeneous infection rates. No geographic differences could be demonstrated on Moorea. The possible mechanisms of this phenomenon are discussed in connection with recent findings on the variability of susceptibility of Ae. aegypti to insecticides.  (+info)