(1/576) Embryonal feather growth in the chicken.

Prenatal feather growth development in the chicken was studied in 7 body regions in HH stages 27-45, using direct measurements, specific histological and immunohistochemical methods, and scanning electron microscopy. The results from measurements of absolute length values, and, particularly, growth rate development in each HH stage revealed a distinct phase of most intensive growth in HH stage 40-41, which was preceded by feather follicle insertion and accompanied by the occurrence of alpha-keratins in barbule cells. Specific regional evaluation demonstrated that growth in the feather follicles of abdominal skin generally showed the slowest progression from absolute values and that in the feather filaments of the developing wings the most rapid progression occurred during HH stage 40-41 from growth rate values.  (+info)

(2/576) Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity.

In spite of recent breakthroughs in understanding limb patterning, the genetic factors determining the differences between the forelimb and the hindlimb have not been understood. The genes Pitx1 and Tbx4 encode transcription factors that are expressed throughout the developing hindlimb but not forelimb buds. Misexpression of Pitx1 in the chick wing bud induced distal expression of Tbx4, as well as HoxC10 and HoxC11, which are normally restricted to hindlimb expression domains. Wing buds in which Pitx1 was misexpressed developed into limbs with some morphological characteristics of hindlimbs: the flexure was altered to that normally observed in legs, the digits were more toe-like in their relative size and shape, and the muscle pattern was transformed to that of a leg.  (+info)

(3/576) Wnt-7a in feather morphogenesis: involvement of anterior-posterior asymmetry and proximal-distal elongation demonstrated with an in vitro reconstitution model.

How do vertebrate epithelial appendages form from the flat epithelia? Following the formation of feather placodes, the previously radially symmetrical primordia become anterior-posterior (A-P) asymmetrical and develop a proximo-distal (P-D) axis. Analysis of the molecular heterogeneity revealed a surprising parallel of molecular profiles in the A-P feather buds and the ventral-dorsal (V-D) Drosophila appendage imaginal discs. The functional significance was tested with an in vitro feather reconstitution model. Wnt-7a expression initiated all over the feather tract epithelium, intensifying as it became restricted first to the primordia domain, then to an accentuated ring pattern within the primordia border, and finally to the posterior bud. In contrast, sonic hedgehog expression was induced later as a dot within the primordia. RCAS was used to overexpress Wnt-7a in reconstituted feather explants derived from stage 29 dorsal skin to further test its function in feather formation. Control skin formed normal elongated, slender buds with A-P orientation, but Wnt-7a overexpression led to plateau-like skin appendages lacking an A-P axis. Feathers in the Wnt-7a overexpressing skin also had inhibited elongation of the P-D axes. This was not due to a lack of cell proliferation, which actually was increased although randomly distributed. While morphogenesis was perturbed, differentiation proceeded as indicated by the formation of barb ridges. Wnt-7a buds have reduced expression of anterior (Tenascin) bud markers. Middle (Notch-1) and posterior bud markers including Delta-1 and Serrate-1 were diffusely expressed. The results showed that ectopic Wnt-7a expression enhanced properties characteristic of the middle and posterior feather buds and suggest that P-D elongation of vertebrate skin appendages requires balanced interactions between the anterior and posterior buds.  (+info)

(4/576) Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus.

Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.  (+info)

(5/576) Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues.

Despite considerable interest in using stable-hydrogen isotope ratio (deltaD) measurements in ecological research, it was previously unknown whether hydrogen derived from drinking water, in addition to that derived from diet, contributed to the nonexchangeable hydrogen in animal tissues. We raised four experimental groups of quail (Coturnix coturnix japonica) from hatch on two isotopically distinct diets (mean nonexchangeable deltaD: -146 and -60 per thousand, Vienna Standard Mean Ocean Water Standard) and drinking waters (mean deltaD: -130 and +196 per thousand, Vienna Standard Mean Ocean Water Standard). Here we show that both dietary and drinking water hydrogen are incorporated into nonexchangeable hydrogen in both metabolically active (i.e., muscle, liver, blood, fat) and inactive (i.e., feather, nail) tissues. Approximately 20% of hydrogen in metabolically active quail tissues and 26-32% of feathers and nail was derived from drinking water. Our findings suggest environmental interpretations of deltaD values from modern and fossil animal tissues may need to account for potentially large isotopic differences between drinking water and food and require a good understanding of the physiological ecology of study organisms.  (+info)

(6/576) Carotenoids, sexual signals and immune function in barn swallows from Chernobyl.

Carotenoids have been hypothesized to facilitate immune function and act as free-radical scavengers, thereby minimizing the frequency of mutations. Populations of animals exposed to higher levels of free radicals are thus expected to demonstrate reduced sexual coloration if use of carotenoids for free-radical scavenging is traded against use for sexual signals. The intensity of carotenoid-based sexual coloration was compared among three populations of barn swallows Hirundo rustica differing in exposure to radioactive contamination. Lymphocyte and immunoglobulin concentrations were depressed, whereas the heterophil:lymphocyte ratio, an index of stress, was enhanced in Chernobyl swallows compared to controls. Spleen size was reduced in Chernobyl compared to that of two control populations. Sexual coloration varied significantly among populations, with the size of a secondary sexual character (the length of the outermost tail feathers) being positively related to coloration in the two control populations, but not in the Chernobyl population. Thus the positive covariation between coloration and sexual signalling disappeared in the population subject to intense radioactive contamination. These findings suggest that the reliable signalling function of secondary sexual characters breaks down under extreme environmental conditions, no longer providing reliable information about the health status of males.  (+info)

(7/576) beta-catenin signaling can initiate feather bud development.

Intercellular signaling by a subset of Wnts is mediated by stabilization of cytoplasmic beta-catenin and its translocation to the nucleus. Immunolocalization of beta-catenin in developing chick skin reveals that this signaling pathway is active in a dynamic pattern from the earliest stages of feather bud development. Forced activation of this pathway by expression of a stabilized beta-catenin in the ectoderm results in the ectopic formation of feather buds. This construct is sufficient to induce bud formation since it does so both within presumptive feather tracts and in normally featherless regions where tract-specific signals are absent. It is also insensitive to the lateral inhibition that mediates the normal spacing of buds and can induce ectopic buds in interfollicular skin. However, additional patterning signals cooperate with this pathway to regulate gene expression within domains of stabilized beta-catenin expression. Localized activation of this pathway within the bud as it develops is required for normal morphogenesis and ectopic activation of the pathway leads to abnormally oriented buds and growths on the feather filaments. These results suggest that activation of the beta-catenin pathway initiates follicle development in embryonic skin and plays important roles in the subsequent morphogenesis of the bud.  (+info)

(8/576) The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4.

The development of the feather buds during avian embryogenesis is a classic example of a spacing pattern. The regular arrangement of feather buds is achieved by a process of lateral inhibition whereby one developing feather bud prevents the formation of similar buds in the immediate vicinity. Lateral inhibition during feather formation implicates a role of long range signalling during this process. Recent work has shown that BMPs are able to enforce lateral inhibition during feather bud formation. However these results do not explain how the feather bud escapes the inhibition itself. We show that this could be achieved by the expression of the BMP antagonist, Follistatin. Furthermore we show that local application of Follistatin leads to the development of ectopic feather buds. We suggest that Follistatin locally antagonises the action of the BMPs and so permits the cellular changes associated with feather placode formation. We also provide evidence for the role of short range signalling during feather formation. We have correlated changes in cellular morphology in feather placodes with the expression of the gene Eph-A4 which encodes a receptor tyrosine kinase that requires direct cell-cell contact for activation. We show that the expression of this gene precedes cellular reorganisation required for feather bud formation.  (+info)