GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection. (1/314)

Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-targeted mice (GM-/-) cleared group B streptococcus (GBS) from the lungs more slowly than wild-type mice. Expression of GM-CSF in the respiratory epithelium of GM-/- mice improved bacterial clearance to levels greater than that in wild-type GM+/+ mice. Acute aerosolization of GM-CSF to GM+/+ mice significantly enhanced clearance of GBS at 24 hours. GBS infection was associated with increased neutrophilic infiltration in lungs of GM-/- mice, while macrophage infiltrates predominated in wild-type mice, suggesting an abnormality in macrophage clearance of bacteria in the absence of GM-CSF. While phagocytosis of GBS was unaltered, production of superoxide radicals and hydrogen peroxide was markedly deficient in macrophages from GM-/- mice. Lipid peroxidation, assessed by measuring the isoprostane 8-iso-PGF2alpha, was decreased in the lungs of GM-/- mice. GM-CSF plays an important role in GBS clearance in vivo, mediated in part by its role in enhancing superoxide and hydrogen peroxide production and bacterial killing by alveolar macrophages.  (+info)

Developmental damage, increased lipid peroxidation, diminished cyclooxygenase-2 gene expression, and lowered prostaglandin E2 levels in rat embryos exposed to a diabetic environment. (2/314)

Previous experimental studies suggest that diabetic embryopathy is associated with an excess of radical oxygen species (ROS), as well as with a disturbance of prostaglandin (PG) metabolism. We aimed to investigate the relationship between these pathways and used hyperglycemia in vitro (embryo culture for 24-48 h) and maternal diabetes in vivo to affect embryonic development. Subsequently, we assessed lipid peroxidation and gene expression of cyclooxygenase (COX)-1 and -2 and measured the concentration of prostaglandin E2 (PGE2) in embryos and membranes. Both hyperglycemia in vitro and maternal diabetes in vivo caused embryonic dysmorphogenesis and increased embryonic levels of 8-epi-PGF2alpha, an indicator of lipid peroxidation. Addition of N-acetylcysteine (NAC) to the culture medium normalized the morphology and 8-epi-PGF2alpha concentration of the embryos exposed to high glucose. Neither hyperglycemia nor diabetes altered COX-1 expression, but embryonic COX-2 expression was diminished on gestational day 10. The PGE2 concentration of day 10 embryos and membranes was decreased after exposure to high glucose in vitro or diabetes in vivo. In vitro addition of NAC to high glucose cultures largely rectified morphology and restored PGE2 concentration, but without normalizing the COX-2 expression in embryos and membranes. Hyperglycemia/diabetes-induced downregulation of embryonic COX-2 gene expression may be a primary event in diabetic embryopathy, leading to lowered PGE2 levels and dysmorphogenesis. Antioxidant treatment does not prevent the decrease in COX-2 mRNA levels but restores PGE2 concentrations, suggesting that diabetes-induced oxidative stress aggravates the loss of COX-2 activity. This may explain in part the antiteratogenic effect of antioxidant treatment.  (+info)

Cholesterol-independent endothelial dysfunction in virgin and pregnant rats fed a diet high in saturated fat. (3/314)

1. Western diets high in saturated fat are associated with an increased incidence of cardiovascular diseases. In this study we have evaluated vascular endothelial function and oxidative stress in virgin rats fed a normal (VC) or high in saturated fat diet (VHF) (20 % lard and corn oil w/w) from weaning until adulthood, and throughout subsequent pregnancy (PC and PHF, respectively). 2. The saturated fat diet was associated with enhanced noradrenaline sensitivity in small mesenteric arteries from VHF rats (VHF vs. VC, P < 0.05) and blunted endothelium-dependent relaxation in VHF and PHF rats (VHF vs. VC, P < 0.001; PHF vs. PC, P < 0.05). Endothelial dysfunction was attributable to a reduced nitric oxide component of relaxation in VHF rats, and blunted prostacyclin and endothelium-derived hyperpolarizing factor components in PHF rats. 3. Other than plasma cholesterol, which was reduced in VHF and PHF rats, plasma lipids were normal. Fasting plasma insulin and glucose concentrations were raised in VHF rats (P < 0.05) and the plasma marker of oxidative stress, 8-iso PGF2alpha, was increased in PHF animals (P < 0.01). 4. These findings suggest that endothelial dysfunction induced by a saturated fat diet is cholesterol independent and likely to be of different mechanistic origin in virgin and pregnant rats.  (+info)

Isoprostanes and PGE2 production in human isolated pulmonary artery smooth muscle cells: concomitant and differential release. (4/314)

The isoprostanes are a group of biologically active arachidonic acid metabolites initially thought to be formed under conditions of oxidative stress and independently of cyclooxygenase. However, recent studies have demonstrated isoprostane production under conditions in which cyclooxygenase is intentionally activated/induced. Here we describe for the first time formation of isoprostanes by human vascular cells via independent pathways of oxidative stress and cyclooxygenase induction. We compared the release of the isoprostane with that of the traditional prostaglandin, prostaglandin E2. Cyclooxygenase-2 induction was confirmed by Western blot. When cells were stimulated with cytokines, the release of isoprostanes was inhibited by the cyclooxygenase-1 and -2 inhibitor indomethacin as well by as the cyclooxygenase-2 selective inhibitor L-745,337. However, treatment of cells with the superoxide-producing enzyme xanthine oxidase also resulted in isoprostane release, which was not affected by cyclooxygenase inhibition, unlike PGE2 release under the same condition. Thus, two independent pathways relating to oxidative stress and cyclooxygenase-2 induction form isoprostanes. These findings may have particular importance in diseases such as sepsis and ARDS in which oxidant stress occurs and cyclooxygenase is induced.  (+info)

Free-radical-generated F2-isoprostane stimulates cell proliferation and endothelin-1 expression on endothelial cells. (5/314)

BACKGROUND: Free-radical-generated F2-isoprostane stimulates DNA synthesis and endothelin-1 (ET-1) expression on endothelial cells. 8-Iso-prostaglandin F2alpha (8-iso-PGF2alpha) is a member of the recently discovered family of prostanoids, the F2-isoprostanes, produced in vivo by cyclooxygenase-independent, free-radical-catalyzed lipid peroxidation. The goal of our study is to establish the effect of isoprostane on ET-1 production by endothelial cells, as well to determine the receptors responsible for these effects. METHODS: The proliferative effect of isoprostanes was measured as an increase of viable cell number and [3H]-thymidine uptake. ET-1 gene expression and protein synthesis were determined by Northern blot and radioimmunoassay, respectively. We also determined inositol 1,4,5-trisphosphate synthesis. Thromboxane A2 (TXA2) receptor antagonist SQ29,548 was used to establish the role of TXA2 receptor in isoprostane effect, as well as to determine the type of receptors involved in these effects. RESULTS: Our results show that physiological concentrations of 8-iso-PGF2alpha stimulated cell proliferation, DNA synthesis, and ET-1 mRNA and protein expression in bovine aortic endothelial cells (BAECs). The proliferative effect was partially abolished by treatment with anti-endothelin antibody. 8-Iso-PGF2alpha also increased inositol 1, 4,5-trisphosphate formation in these cells. These effects were partially inhibited by SQ29,548. In competitive binding assays, two binding sites were recognized on BAECs with dissociation constants (Kd) and binding site densities at equilibrium similar to those previously described in smooth muscle cells and likely represent [3H]-8-iso-PGF2alpha binding to its own receptor (high-affinity binding site) and cross-recognition of the TXA2 receptor (low-affinity binding site). CONCLUSION: These studies expand the potential scope of the pathophysiologic significance of F2-isoprostanes, released during oxidant injury, to include alteration of endothelial cell biology.  (+info)

Alcohol-induced generation of lipid peroxidation products in humans. (6/314)

To address the hypothesis that elevated blood alcohol increases systemic oxidant stress, we measured urinary excretion of isoprostanes (iPs), free radical-catalyzed products of arachidonic acid. Ten healthy volunteers received acute doses of alcohol (Everclear-R) or placebo under randomized, controlled, double-blind conditions. Urinary iPF2a-III increased in a time- and dosage-dependent manner after dosing with alcohol, with the peak urinary iPF2a-III excretion correlating with the rise in blood alcohol. To determine whether oxidant stress was associated with alcohol-induced liver disease (ALD), we then studied the excretion of iP in individuals with a documented history of alcohol-induced hepatitis or alcohol-induced chronic liver disease (AC). Both urinary iPF2a-III and urinary iPF2a-VI were markedly increased in patients with acute alcoholic hepatitis. In general, urinary iPF2a-III was significantly elevated in cirrhotic patients, relative to controls, but excretion was more pronounced when cirrhosis was induced by alcohol than by hepatitis C. Excretion of iPF2a-VI, as well as 4-hydroxynonenal and the iPF2a-III metabolite, 2,3-dinor-5, 6-dihydro-iPF2a-III, was also increased in AC. Vitamin C, but not aspirin, reduced urinary iPs in AC. Thus, vasoactive iPs, which serve as indices of oxidant stress, are elevated in the urine in both acute and chronic ALD. Increased generation of iPs by alcohol in healthy volunteers is consistent with the hypothesis that oxidant stress precedes and contributes to the evolution of ALD.  (+info)

Urinary isoprostane excretion is not confounded by the lipid content of the diet. (7/314)

This study aims to determine if isoprostanes accurately reflect in vivo lipid peroxidation or whether they are influenced by the lipid content of the diet. Isoprostanes were measured in urine of healthy subjects under different conditions of lipid intake and under conditions of oxidative stress (fasting). We found that isoprostanes were not influenced by the lipid content of the diet: the urinary level remained constant over 24 h as well as over 4 consecutive days when switching from high to low lipid intake. Urinary isoprostane excretion was increased by 40% following a 24 h fast. We concluded that urinary isoprostane excretion reflects endogenous lipid peroxidation in vivo.  (+info)

Low-dose angiotensin II increases free isoprostane levels in plasma. (8/314)

Chronic intravenous infusion of subpressor doses of angiotensin II causes blood pressure to increase progressively over the course of several days. The mechanisms underlying this response, however, are poorly understood. Because high-dose angiotensin II increases oxidative stress, and some compounds that result from the increased oxidative stress (eg, isoprostanes) produce vasoconstriction and antinatriuresis, we tested the hypothesis that a subpressor dose of angiotensin II also increases oxidative stress, as measured by 8-epi-prostaglandin F(2alpha) (isoprostanes), which may contribute to the slow pressor response to angiotensin II. To test this hypothesis, we infused angiotensin II (10 ng/kg per minute for 28 days via an osmotic pump) into 6 conscious normotensive female pigs (30 to 35 kg). We recorded mean arterial pressure continuously with a telemetry system and measured plasma isoprostanes before starting the angiotensin II infusion (baseline) and again after 28 days with an enzyme immunoassay. Angiotensin II infusion significantly increased mean arterial pressure from 121+/-4 to 153+/-7 mm Hg (P<0. 05) without altering total plasma isoprostane levels (180.0+/-24.3 versus 147.0+/-29.2 pg/mL; P=NS). However, the plasma concentrations of free isoprostanes increased significantly, from 38.3+/-5.8 to 54.7+/-10.4 pg/mL (P<0.05). These results suggest that subpressor doses of angiotensin II increase oxidative stress, as implied by the increased concentration of free isoprostanes, which accompany the elevation in mean arterial pressure elevation. Thus, isoprostane-induced vasoconstriction and antinatriuresis may contribute to the hypertension induced by the slow pressor responses of angiotensin II.  (+info)