O-raffinose cross-linking markedly reduces systemic and renal vasoconstrictor effects of unmodified human hemoglobin. (1/169)

The hemodynamic effects of a 20% exchange-transfusion with different solutions of highly purified human hemoglobin A-zero (A0) were evaluated. We compared unmodified hemoglobin with hemoglobin cross-linked with O-raffinose. Unmodified hemoglobin increased systemic vascular resistance and mean arterial pressure more than the O-raffinose cross-linked hemoglobin solution (by approximately 45% and approximately 14%, respectively). Unmodified hemoglobin markedly reduced cardiac output (CO) by approximately 21%, whereas CO was unaffected by the O-raffinose cross-linked hemoglobin solution. Unmodified and O-raffinose cross-linked hemoglobin solutions increased mean arterial pressure to comparable extents ( approximately 14% and approximately 9%, respectively). Unmodified hemoglobin increased renal vascular resistance 2-fold and reduced the glomerular filtration rate by 58%. In marked contrast, the O-raffinose cross-linked hemoglobin had no deleterious effect on the glomerular filtration rate, renal blood flow, or renal vascular resistance. The extents to which unmodified and O-raffinose cross-linked hemoglobin solutions inactivated nitric oxide also were compared using three separate in vitro assays: platelet nitric oxide release, nitric oxide-stimulated platelet cGMP production, and endothelium-derived relaxing factor-mediated inhibition of platelet aggregation. Unmodified hemoglobin inactivated or oxidized nitric oxide to a greater extent than the O-raffinose cross-linked hemoglobin solutions in all three assays. In summary, O-raffinose cross-linking substantially reduced the systemic vasoconstriction and the decrease in CO induced by unmodified hemoglobin and eliminated the deleterious effects of unmodified hemoglobin on renal hemodynamics and function. We hypothesize that O-raffinose cross-linking reduces the degree of oxidation of nitric oxide and that this contributes to the reduced vasoactivity of this modified hemoglobin.  (+info)

Efficacy of recombinant human Hb by 31P-NMR during isovolemic total exchange transfusion. (2/169)

The ability of recombinant human Hb (rHb1.1), which is being developed as an oxygen therapeutic, to support metabolism was measured by in vivo 31P-NMR surface coil spectroscopy of the rat abdomen in control animals and in animals subjected to isovolemic exchange transfusion to hematocrit of <3% with human serum albumin or 5 g/dl rHb1.1. No significant changes in metabolite levels were observed in control animals for up to 6 h. The albumin-exchange experiments, however, resulted in a more than eightfold increase in Pi and a 50% drop in phosphocreatine and ATP within 40 min. The tissue pH dropped from 7.4 to 6.8. The decrease in high-energy phosphates obeyed Michaelis-Menten kinetics, with a Michaelis-Menten constant of 3% as the hematocrit at which a 50% drop in high-energy phosphates was observed. Exchange transfusion with rHb1.1 resulted in no significant drop in high-energy phosphates, no rise in Pi, and no change in tissue pH from 7.35 +/- 0.15 for up to 5 h after exchange. By these criteria, rHb1.1 at a plasma Hb concentration of approximately 5 g/dl after total exchange transfusion was able to sustain energy metabolism of gut tissue at levels indistinguishable from control rats with a threefold higher total Hb level in erythrocytes.  (+info)

Serum malondialdehyde concentration in babies with hyperbilirubinaemia. (3/169)

AIM: To determine lipid peroxide concentrations in the first 10 days of life. METHODS: Malondialdehyde concentrations were investigated in neonates with or without hyperbilirubinaemia during the first 10 days of life. RESULTS: Serum malondialdehyde concentrations were higher in infants with hyperbilirubinaemia than in controls. A positive correlation was found between malondialdehyde and bilirubin concentrations in the study group. When the study group was categorised according to the presence of haemolysis, a significant correlation was found between malondialdehyde and bilirubin concentrations in those infants with hyperbilirubinaemia due to haemolysis. There was no such correlation in those without haemolysis. CONCLUSION: Exchange transfusion rapidly produces variable changes in pro-oxidant and antioxidant plasma concentrations in neonates, which may be responsible for free radical metabolism. The fall in malondialdehyde concentration is probably directly related to its exogenous removal by exchange transfusion.  (+info)

Sickle cell disease and aortic valve replacement: use of cardiopulmonary bypass, partial exchange transfusion, platelet sequestration, and continuous hemofiltration. (4/169)

Sickle cell disease in patients undergoing open heart procedures presents a multitude of challenges to the medical staff. With improved techniques of cardiopulmonary bypass, surgery, and anesthesia for treating patients with sickle cell disease, perfusionists will likely encounter patients with this genetic disorder on a more frequent basis. A 40-year-old black woman was admitted to our institution with recurrent Staphylococcus epidermidis and sepsis. She underwent transesophageal echocardiography and cardiac catheterization and was subsequently diagnosed with severe aortic insufficiency. The aortic valve was replaced. Herein, we report our experience in the preoperative, perioperative, and postoperative management of this patient. We present a concise update on the current literature and techniques used by others in similar cases, and we provide a brief section on future considerations to assist fellow practitioners in recognizing this disease and meeting the accompanying challenges.  (+info)

Long-term survival of hamster hearts in presensitized rats. (5/169)

We transplanted hamster hearts into rats that had been sensitized to hamster cardiac grafts 5 days earlier as a model for discordant xenotransplantation. Sensitized rats had high serum levels of elicited anti-donor IgM and IgG that caused hyperacute rejection. Transient complement inhibition with cobra venom factor (CVF) plus daily and continuing cyclosporin A (CyA) prevented hyperacute rejection. However, grafts underwent delayed xenograft rejection (DXR). DXR involved IgG and associated Ab-dependent cell-mediated rejection, because depletion of IgG or Ab-dependent cell-mediated rejection-associated effector cells prolonged graft survival and the serum-mediated Ab-dependent cell-mediated cytotoxicity in vitro. Blood exchange in combination with CVF/CyA treatment dramatically decreased the level of preexisting Abs, but DXR still occurred in association with the return of Abs. Splenectomy and cyclophosphamide acted synergistically to delay Ab return, and when combined with blood exchange/CVF/CyA facilitated long-term survival of grafts. These grafts survived in the presence of anti-donor IgM, IgG, and complement that precipitated rejection of naive hearts, indicating that accommodation (survival in the presence of anti-graft Abs and complement) had occurred. We attribute the long-term survival to the removal of preexisting anti-donor Abs and therapy that attenuated the rate of Ab return. Under such conditions, the surviving hearts showed expression in endothelial cells and smooth muscle cells of protective genes and an intragraft Th2 immune response. Th2 responses and protective genes are associated with resistance to IgM- and IgG-mediated, complement-dependent and -independent forms of rejection.  (+info)

Simvastatin. A new therapeutic approach for Smith-Lemli-Opitz syndrome. (6/169)

The Smith-Lemli-Opitz syndrome (SLOS) is caused by deficient Delta(7)-dehydrocholesterol reductase, which catalyzes the final step of the cholesterol biosynthetic pathway, resulting in low cholesterol and high concentrations of its direct precursors 7-dehydrocholesterol (7DHC) and 8DHC. We hypothesized that i) 7DHC and 8DHC accumulation contributes to the poor outcome of SLOS patients and ii) blood exchange transfusions with hydroxymethylglutaryl (HMG)-CoA reductase inhibition would improve the precursor-to-cholesterol ratio and may improve the clinical outcome of SLO patients. First, an in vitro study was performed to study sterol exchange between plasma and erythrocyte membranes. Second, several exchange transfusions were carried out in vivo in two SLOS patients. Third, simvastatin was given for 23 and 14 months to two patients. The in vitro results illustrated rapid sterol exchange between plasma and erythrocyte membranes. The effect of exchange transfusion was impressive and prompt but the effect on plasma sterol levels lasted only for 3 days. In contrast, simvastatin treatment for several months demonstrated a lasting improvement of the precursor-to-cholesterol ratio in plasma, erythrocyte membranes, and cerebrospinal fluid (CSF). Plasma precursor concentrations decreased to 28 and 33% of the initial level, respectively, whereas the cholesterol concentration normalized by a more than twofold increase. During the follow-up period all morphometric parameters improved. The therapy was well tolerated and no unwanted clinical side effects occurred. This is the first study in which the blood cholesterol level in SLOS patients is normalized with a simultaneous significant decrease in precursor levels. There was a lasting biochemical improvement with encouraging clinical improvement. Statin therapy is a promising novel approach in SLOS that deserves further studies in larger series of patients.  (+info)

Clinical applications of the continuous flow blood separator machine. (7/169)

The NCl/IBM or Aminco Continuous Flow Blood Separator Machine is a safe apparatus for the selective removal or exchange of either packed red blood cells, leucocyte-rich or platelet-rich layers or plasma. Abnormal fractions from any of these layers may be collected and discarded. Normal constituents may be collected for therapeutic uses. The wide scope of its applications includes important uses in clinical immunology: temporary provision of good leucocytes or platelets; harvesting of immune leucocytes (preparation of transfer factor at up to 10 units per harvest); removal of cryo- or macro-globulins, immune complexes or blocking factors; replacement therapy for antibody or complement deficiencies. Examples are given of such uses together with some of the medical problems so far encountered.  (+info)

Dynamics of glomerular ultrafiltration in the rat. VIII. Effects of hematocrit. (8/169)

This study was undertaken in an effort to examine the effects of selective variations in systemic hematocrit on the preglomerular, glomerular, and postglomerular micocirculation in the rat. By isovolemic exchange transfusions, systemic hematocrit (control 51 ml/100 ml) was either reduced (21 ml/100 ml, N equal 7 rats) or elevated (62 ml/100 ml, N equal 7). Single nephron glomerular filtration rate varied inversely and filtration fraction varied directly with the changes in hematocrit. The fall in filtration fraction with decreased hematocrit was due to a decline in the measured glomerular transcapillary hydraulic pressure difference and to a marked increased in the initial glomerular plasma flow rate. Afferent (RA)and efferent (RE) arteriolar resistance declined with the fall in hematocrit; RA fell proportionately more than did RE. The rise in filtration fraction with the elevation in hematocrit was due to a marked increase in in part due to a relatively greater rise in RE than in RA. These findings provide an attractive explanation for the general tendency for filtration fraction to vary directly with hematocrit in anemic and polycythemic states in man.  (+info)