Characterization of the analgesic and anti-inflammatory activities of ketorolac and its enantiomers in the rat. (1/1891)

The marked analgesic efficacy of ketorolac in humans, relative to other nonsteroidal anti-inflammatory drugs (NSAIDs), has lead to speculation as to whether additional non-NSAID mechanism(s) contribute to its analgesic actions. To evaluate this possibility, we characterized (R,S)-ketorolac's pharmacological properties in vivo and in vitro using the nonselective cyclooxygenase (COX) inhibitors [indomethacin (INDO) and diclofenac sodium (DS)] as well as the selective COX-2 inhibitor, celecoxib, as references. The potency of racemic (R,S)-ketorolac was similar in tests of acetic acid-induced writhing, carrageenan-induced paw hyperalgesia, and carrageenan-induced edema formation in rats; ID50 values = 0.24, 0. 29, and 0.08 mg/kg, respectively. (R,S)-ketorolac's actions were stereospecific, with (S)-ketorolac possessing the biological activity of the racemate in the above tests. The analgesic potencies for (R,S)-, (S)-, and (R)-ketorolac, INDO, and DS were highly correlated with their anti-inflammatory potencies, suggesting a common mechanism. (R,S)-ketorolac was significantly more potent than INDO or DS in vivo. Neither difference in relative potency of COX inhibition for (R,S)-ketorolac over INDO and DS nor activity of (S)-ketorolac at a number of other enzymes, channels, or receptors could account for the differences in observed potency. The distribution coefficient for (R,S)-ketorolac was approximately 30-fold less than for DS or INDO, indicating that (R,S)-ketorolac is much less lipophilic than these NSAIDs. Therefore, the physicochemical and pharmacokinetics properties of (R,S)-ketorolac may optimize the concentrations of (S)-ketorolac at its biological target(s), resulting in greater efficacy and potency in vivo.  (+info)

Inhibition of endothelium-dependent hyperpolarization by endothelial prostanoids in guinea-pig coronary artery. (2/1891)

1. In smooth muscle of the circumflex coronary artery of guinea-pig, acetylcholine (ACh, 10(-6) M) produced an endothelium-dependent hyperpolarization consisting of two components. An initial component that occurs in the presence of ACh and a slow component that developed after ACh had been withdrawn. Each component of the hyperpolarization was accompanied by an increase in membrane conductance. 2. Indomethacin (5 x 10(-6) M) or diclofenac (10(-6) M), both inhibitors of cyclooxygenase, abolished only the slow hyperpolarization. The initial hyperpolarization was not inhibited by diclofenac nor by nitroarginine, an inhibitor of nitric oxide synthase. 3. Both components of the ACh-induced hyperpolarization were abolished in the presence of atropine (10(-6) M) or high-K solution ([K+]0 = 29.4 mM). 4. The interval between ACh-stimulation required to generate an initial hyperpolarization of reproducible amplitude was 20 min or greater, but it was reduced to less than 5 min after inhibiting cyclooxygenase activity. Conditioning stimulation of the artery with substance P (10(-7) M) also caused a long duration (about 20 min) inhibition of the ACh-response. 5. The amplitude of the hyperpolarization generated by Y-26763, a K+-channel opener, was reproducible within 10 min after withdrawal of ACh. 6. Exogenously applied prostacyclin (PGI2) hyperpolarized the membrane and reduced membrane resistance in concentrations over 2.8 x 10(-9)M. 7. At concentrations below threshold for hyperpolarization and when no alteration of membrane resistance occurred, PGI2 inhibited the initial component of the ACh-induced hyperpolarization. 8. It is concluded that endothelial prostanoids, possibly PGI2, have an inhibitory action on the release of endothelium-derived hyperpolarizing factor.  (+info)

The cyclo-oxygenase-dependent regulation of rabbit vein contraction: evidence for a prostaglandin E2-mediated relaxation. (3/1891)

1. Arachidonic acid (0.01-1 microM) induced relaxation of precontracted rings of rabbit saphenous vein, which was counteracted by contraction at concentrations higher than 1 microM. Concentrations higher than 1 microM were required to induce dose-dependent contraction of vena cava and thoracic aorta from the same animals. 2. Pretreatment with a TP receptor antagonist (GR32191B or SQ29548, 3 microM) potentiated the relaxant effect in the saphenous vein, revealed a vasorelaxant component in the vena cava response and did not affect the response of the aorta. 3. Removal of the endothelium from the venous rings, caused a 10 fold rightward shift in the concentration-relaxation curves to arachidonic acid. Whether or not the endothelium was present, the arachidonic acid-induced relaxations were prevented by indomethacin (10 microM) pretreatment. 4. In the saphenous vein, PGE2 was respectively a 50 and 100 fold more potent relaxant prostaglandin than PGI2 and PGD2. Pretreatment with the EP4 receptor antagonist, AH23848B, shifted the concentration-relaxation curves of this tissue to arachidonic acid in a dose-dependent manner. 5. In the presence of 1 microM arachidonic acid, venous rings produced 8-10 fold more PGE2 than did aorta whereas 6keto-PGF1alpha and TXB2 productions remained comparable. 6. Intact rings of saphenous vein relaxed in response to A23187. Pretreatment with L-NAME (100 microM) or indomethacin (10 microM) reduced this response by 50% whereas concomitant pretreatment totally suppressed it. After endothelium removal, the remaining relaxing response to A23187 was prevented by indomethacin but not affected by L-NAME. 7. We conclude that stimulation of the cyclo-oxygenase pathway by arachidonic acid induced endothelium-dependent, PGE2/EP4 mediated relaxation of the rabbit saphenous vein. This process might participate in the A23187-induced relaxation of the saphenous vein and account for a relaxing component in the response of the vena cava to arachidonic acid. It was not observed in thoracic aorta because of the lack of a vasodilatory receptor and/or the poorer ability of this tissue than veins to produce PGE2.  (+info)

Inhibition of nitric oxide but not prostacyclin prevents poststenotic dilatation in rabbit femoral artery. (4/1891)

BACKGROUND: Poststenotic dilatation (PSD) occurs in a low-pressure region where recirculation eddies oscillate in size during the cardiac cycle. NO may be an important mediator of PSD. METHODS AND RESULTS: Femoral arteries of 7 adult male New Zealand White rabbits were stenosed bilaterally to achieve a diameter reduction of 70. 9+/-6.7% (n=14). At the time of stenosis, the adventitia of one of the arteries was coated with 1 mmol/L of NG-nitro-L-arginine methyl ester (L-NAME) in 22% (wt/vol) Pluronic gel, while the contralateral vessel was coated with gel without L-NAME. In stenosed femoral arteries that were treated with gel without L-NAME, a maximum PSD of 30.99+/-7.92% (n=7) was observed in polymer casts at 3 days relative to the mean proximal diameter of 1.57+/-0.25 mm at a position 12 mm upstream of each stenosis. In contrast, the vessels treated with L-NAME exhibited a maximum PSD of only 7.16+/-8.81% (n=7) relative to the mean proximal diameter of 1.55+/-0.16 mm. L-NAME caused a 76. 9% reduction (P<0.001, n=7) of PSD. Similarly, NG-monomethyl-L-arginine 1 mmol/L and NG-nitro-L-arginine 10 micromol/L attenuated PSD by 57.5% (P<0.001, n=6) and 63.9% (P<0.05, n=6), respectively. Indomethacin 10 micromol/L caused no reduction in PSD. Arterial rings obtained from the poststenotic region were more sensitive and responsive to acetylcholine than those obtained proximal to the stenosis. CONCLUSIONS: NO, but not prostacyclin, is a major mediator of PSD.  (+info)

Effects of docosahexaenoic and eicosapentaenoic acid on lipid metabolism, eicosanoid production, platelet aggregation and atherosclerosis in hypercholesterolemic rats. (5/1891)

Exogenously hypercholesterolemic (ExHC) rats were fed on an atherogenic diet supplemented with 1% each of either ethyl ester docosahexaenoic acid [EE-DHA, 22:6(n-3)], ethyl ester eicosapentaenoic acid [EE-EPA, 20:5(n-3)] or safflower oil (SO) for 6 months. The rats fed on the diets containing EE-EPA or EE-DHA, compared with those fed on SO, had lower serum cholesterol and triacylglycerol levels, less aggregation of platelets and slower progress of intimal thickening in the ascending aorta. Relative to the SO-fed rats, both of the (n-3) fatty acid-fed rats had a significantly reduced proportion of arachidonic acid in the platelet and aortic phospholipids, and lower production of thromboxane A2 by platelets and of prostacyclin by the aorta. These results suggest that EPA and DHA are similarly involved in preventing atherosclerosis development by reducing hypercholesterolemia and modifying the platelet functions.  (+info)

Inhibition of effects of flow on potassium permeability in single perfused frog mesenteric capillaries. (6/1891)

1. We have investigated the effects of various potential inhibitors on flow-dependent K+ permeability (PK) of single perfused mesenteric microvessels in pithed frogs. 2. Neither superfusion with a nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (10 or 100 micromol l-1), nor the addition of indomethacin (30 micromol l-1) to both perfusate and superfusate reduced the positive correlation between PK and flow velocity (U). 3. In the presence of agents known to raise intracellular levels of adenosine 3',5'-cyclic monophosphate (noradrenaline, 8-bromo-cAMP and a combination of forskolin and rolipram) the slope of the relation between PK and U was no longer significant, so that PK was no longer flow dependent. 4. These results confirm that the flow dependence of PK is a biological process and not an artefact of measurement and suggest a role for intracellular cAMP rather than nitric oxide or prostacyclin in the flow-dependent modulation of PK in frog mesenteric microvessels.  (+info)

Angiotensin II-induced constrictions are masked by bovine retinal vessels. (7/1891)

PURPOSE: To unmask the vasoconstricting effect of angiotensin II (Ang II) on retinal smooth muscle by studying its interaction with endothelium-derived paracrine substances. This study focused specifically on determining the changes in vascular diameter and the release of endothelial-derived vasodilators, nitric oxide (NO) and prostaglandin (PG) I2, from isolated retinal microvessels. METHODS: Bovine retinal central artery and vein were cannulated, and arterioles and venules were perfused with oxygenated/heparinized physiological salt solution at 37 degrees C. This ex vivo perfused retinal microcirculation model was used to observe the contractile effects of Ang II on arterioles and venules of different diameters. The NO and PGI2 synthase inhibitors, 1-NOARG and flurbiprofen, respectively, were used to unmask Ang II vasoconstriction; the changes in vascular diameters were then measured. Enzyme immunoassays were used to measure the release of cGMP (an index of NO release) and 6-keto-PG-F1alpha (a stable metabolite of PGI2) from isolated bovine retinal vessels. RESULTS: Topically applied Ang II (10(-10) M to 10(-4) M) caused significant (P < 0.05) arteriolar and venular constrictions in a dose-dependent manner, with the smallest retinal arterioles (7+/-0.2 microm luminal diameter) and venules (12+/-2 microm luminal diameter) significantly more sensitive than larger vessels. After the inhibition of endogenous NO and PGI2 synthesis by 1-NOARG and flurbiprofen, respectively, the vasoconstriction effects of Ang II became more pronounced. Again, the smallest vessels tested were significantly more sensitive, and synthesis of endothelial-derived relaxing factor (EDRF), therefore, may be most important in these vessels. Vasoactive doses of Ang II (10(-10) M to 10(-4) M) caused a dose-dependent increase in the release of NO and PGI2 from isolated bovine retinal vessels, indicating that the increase in EDRF may nullify direct Ang II-induced vasoconstriction. Interestingly, intraluminal administration of Ang II caused only vasodilation. CONCLUSIONS: This study demonstrates that the retinal vascular endothelium acts as a buffer against the vasoconstricting agent Ang II via release of vasodilators NO and PGI2, and the vasoconstriction effects due to Ang II are most prominent in the smallest diameter vessels.  (+info)

Vasodilator therapy for primary pulmonary hypertension in children. (8/1891)

BACKGROUND: This report presents 13 years of experience with vasodilator therapy for primary pulmonary hypertension (PPH) in children. Two eras were involved: between 1982 and 1987, oral calcium channel blockers were the only agents available for long-term therapy; after 1987, prostacyclin (PGI2) has been available for long-term intravenous use. METHODS AND RESULTS: Seventy-four children underwent short-term vasodilator testing with intravenous PGI2. Those who manifested pulmonary vasodilation ("acute responders") were treated with oral calcium channel blockers. Until 1987, "acute nonresponders" were treated in the same way as long as they had no serious side effects. When PGI2 became available for long-term administration, all nonresponders, as well as those who failed to improve clinically and hemodynamically on calcium channel blockers, were treated with long-term PGI2. In the 31 responders, calcium channel blockers improved survival compared with the 43 nonresponders (P=0.0002). Survival was also better in 24 PGI2-treated nonresponders compared with 22 nonresponders for whom PGI2 was unavailable (P=0.0005) as well as in all children who failed conventional therapy (n=31; P=0.002). CONCLUSIONS: Long-term vasodilator therapy improves survival in children with PPH. In acute responders, oral calcium channel blockers generally suffice. In both nonresponders to short-term testing and responders who fail to improve on calcium channel blockers, continuous intravenous infusion of PGI2 improves survival.  (+info)