Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. (1/904)

On the basis of developmental gene expression, the vertebrate central nervous system comprises: a forebrain plus anterior midbrain, a midbrain-hindbrain boundary region (MHB) having organizer properties, and a rhombospinal domain. The vertebrate MHB is characterized by position, by organizer properties and by being the early site of action of Wnt1 and engrailed genes, and of genes of the Pax2/5/8 subfamily. Wada and others (Wada, H., Saiga, H., Satoh, N. and Holland, P. W. H. (1998) Development 125, 1113-1122) suggested that ascidian tunicates have a vertebrate-like MHB on the basis of ascidian Pax258 expression there. In another invertebrate chordate, amphioxus, comparable gene expression evidence for a vertebrate-like MHB is lacking. We, therefore, isolated and characterized AmphiPax2/5/8, the sole member of this subfamily in amphioxus. AmphiPax2/5/8 is initially expressed well back in the rhombospinal domain and not where a MHB would be expected. In contrast, most of the other expression domains of AmphiPax2/5/8 correspond to expression domains of vertebrate Pax2, Pax5 and Pax8 in structures that are probably homologous - support cells of the eye, nephridium, thyroid-like structures and pharyngeal gill slits; although AmphiPax2/5/8 is not transcribed in any structures that could be interpreted as homologues of vertebrate otic placodes or otic vesicles. In sum, the developmental expression of AmphiPax2/5/8 indicates that the amphioxus central nervous system lacks a MHB resembling the vertebrate isthmic region. Additional gene expression data for the developing ascidian and amphioxus nervous systems would help determine whether a MHB is a basal chordate character secondarily lost in amphioxus. The alternative is that the MHB is a vertebrate innovation.  (+info)

N,N'-Diacetyl-L-cystine-the disulfide dimer of N-acetylcysteine-is a potent modulator of contact sensitivity/delayed type hypersensitivity reactions in rodents. (2/904)

Oral N-acetyl-L-cysteine (NAC) is used clinically for treatment of chronic obstructive pulmonary disease. NAC is easily oxidized to its disulfide. We show here that N,N'-diacetyl-L-cystine (DiNAC) is a potent modulator of contact sensitivity (CS)/delayed type hypersensitivity (DTH) reactions in rodents. Oral treatment of BALB/c mice with 0.003 to 30 micromol/kg DiNAC leads to enhancement of a CS reaction to oxazolone; DiNAC is 100 to 1000 times more potent than NAC in this respect, indicating that it does not act as a prodrug of NAC. Structure-activity studies suggest that a stereochemically-defined disulfide element is needed for activity. The DiNAC-induced enhancement of the CS reaction is counteracted by simultaneous NAC-treatment; in contrast, the CS reaction is even more enhanced in animals treated with DiNAC together with the glutathione-depleting agent buthionine sulfoximine. These data suggest that DiNAC acts via redox processes. Immunohistochemically, ear specimens from oxazolone-sensitized and -challenged BALB/c mice treated with DiNAC display increased numbers of CD8(+) cells. DiNAC treatment augments the CS reaction also when fluorescein isothiocyanate is used as a sensitizer in BALB/c mice; this is a purported TH2 type of response. However, when dinitrofluorobenzene is used as a sensitizer, inducing a purported TH1 type of response, DiNAC treatment reduces the reaction. Treatment with DiNAC also reduces a DTH footpad-swelling reaction to methylated BSA. Collectively, these data indicate that DiNAC in vivo acts as a potent and effective immunomodulator that can either enhance or reduce the CS or DTH response depending on the experimental conditions.  (+info)

Effects of chronic administration of kanamycin on conditioned suppression to auditory stimulus in rats. (3/904)

The conditioned suppression technique was employed to study the ototoxic effects of chronic administration of the antibiotic, kanamycin. Lever pressing behavior for food reinforcement of rats was suppressed in the presence of an auditory stimulus (sound) or visual stimulus (light) that had been previously paired with electric shocks. Repeated administration of kanamycin at the dose of 400 mg/kg/day for more than 50 days significantly attenuated the conditioned suppression to auditory stimulus but did not attenuate the conditioned suppression to visual stimulus. This finding suggests that the attenuating effect of chronic administration of kanamycin on conditioned suppression to auditory stimulus can be interpreted in terms of the selective action of the drug on the auditory system.  (+info)

Modulation of acute and chronic inflammatory processes by cacospongionolide B, a novel inhibitor of human synovial phospholipase A2. (4/904)

1. Cacospongionolide B is a novel marine metabolite isolated from the sponge Fasciospongia cavernosa. In in vitro studies, this compound inhibited phospholipase A2 (PLA2), showing selectivity for secretory PLA2 (sPLA2) versus cytosolic PLA2 (cPLA2), and its potency on the human synovial enzyme (group II) was similar to that of manoalide. 2. This activity was confirmed in vivo in the 8 h zymosan-injected rat air pouch, on the secretory enzyme accumulating in the pouch exudate. Cacospongionolide B, that is bioavailable when is given orally, reduced the elevated levels of sPLA2 present in paw homogenates of rats with adjuvant arthritis. 3. This marine metabolite showed topical anti-inflammatory activity on the mouse ear oedema induced by 12-O-tetradecanoylphorbol acetate (TPA) and decreased carrageenin paw oedema in mice after oral administration of 5, 10 or 20 mg kg(-1). 4. In the mouse air pouch injected with zymosan, cacospongionolide B administered into the pouch, induced a dose-dependent reduction in the levels of eicosanoids and tumour necrosis factor alpha (TNFalpha) in the exudates 4 h after the stimulus. It also had a weak effect on cell migration. 5. The inflammatory response of adjuvant arthritis was reduced by cacospongionolide B, which did not significantly affect eicosanoid levels in serum, paw or stomach homogenates and did not induce toxic effects. 6 Cacospongionolide B is a new inhibitor of sPLA2 in vitro and in vivo, with anti-inflammatory properties in acute and chronic inflammation. This marine metabolite was active after oral administration and able to modify TNFalpha levels, and may offer an interesting approach in the search for new anti-inflammatory agents.  (+info)

Differential transcriptional control as the major molecular event in generating Otx1-/- and Otx2-/- divergent phenotypes. (5/904)

Otx1 and Otx2, two murine homologs of the Drosophila orthodenticle (otd) gene, show a limited amino acid sequence divergence. Their embryonic expression patterns overlap in spatial and temporal profiles with two major exceptions: until 8 days post coitum (d.p.c. ) only Otx2 is expressed in gastrulating embryos, and from 11 d.p.c. onwards only Otx1 is transcribed within the dorsal telencephalon. Otx1 null mice exhibit spontaneous epileptic seizures and multiple abnormalities affecting primarily the dorsal telencephalic cortex and components of the acoustic and visual sense organs. Otx2 null mice show heavy gastrulation abnormalities and lack the rostral neuroectoderm corresponding to the forebrain, midbrain and rostral hindbrain. In order to define whether these contrasting phenotypes reflect differences in expression pattern or coding sequence of Otx1 and Otx2 genes, we replaced Otx1 with a human Otx2 (hOtx2) full-coding cDNA. Interestingly, homozygous mutant mice (hOtx2(1)/hOtx2(1)) fully rescued epilepsy and corticogenesis abnormalities and showed a significant improvement of mesencephalon, cerebellum, eye and lachrymal gland defects. In contrast, the lateral semicircular canal of the inner ear was never recovered, strongly supporting an Otx1-specific requirement for the specification of this structure. These data indicate an extended functional homology between OTX1 and OTX2 proteins and provide evidence that, with the exception of the inner ear, in Otx1 and Otx2 null mice contrasting phenotypes stem from differences in expression patterns rather than in amino acid sequences.  (+info)

Contact hypersensitivity: a simple model for the characterization of disease-site targeting by liposomes. (6/904)

A murine model of delayed-type hypersensitivity (DTH) is characterized with respect to liposome accumulation at a site of inflammation. Mice were sensitized by painting the abdominal region with a solution of 2,4-dinitrofluorobenzene (DNFB) and inflammation was induced 5 days later by challenging the ear with a dilute solution of DNFB. The inflammatory response was readily monitored by measuring ear thickness (edema) and radiolabeled leukocyte infiltration. Maximum ear swelling and cellular infiltration occurred 24 h after the epicutaneous challenge with the ear returning to normal size after approximately 72 h. We demonstrate that large unilamellar vesicles (LUV) accumulate at the site of inflammation to a level more than 20-fold higher than that measured in the untreated ear. Vesicle delivery to the ear correlated with increased vascular leakage resulting from endothelium remodeling in response to DNFB challenge, and was not a consequence of increased local tissue blood volume. Extravasation occurred only during the first 24 h after ear challenge; after this time the permeability of the endothelium to vesicles returned to normal. We further showed that LUV with a diameter of 120 nm exhibit maximum levels of accumulation, that a polyethylene glycol surface coating does not increase delivery, and that the process can be inhibited by the application of topical corticosteroids at the time of induction. These data and the inflammation model are discussed with respect to developing lipid-based drug delivery vehicles designed to accumulate at inflammatory disease sites.  (+info)

Effects of vasopressin on the sympathetic contraction of rabbit ear artery during cooling. (7/904)

In order to analyse the effects of arginine-vasopressin on the vascular contraction to sympathetic nerve stimulation during cooling, the isometric response of isolated, 2-mm segments of the rabbit central ear (cutaneous) artery to electrical field stimulation (1-8 Hz) was recorded at 37 and 30 degrees C. Electrical stimulation (37 degrees C) produced frequency-dependent arterial contraction, which was reduced at 30 degrees C and potentiated by vasopressin (10 pM, 100 pM and 1 nM). This potentiation was greater at 30 than at 37 degrees C and was abolished at both temperatures by the antagonist of vasopressin V1 receptors d(CH2)5 Tyr(Me)AVP (100 nM). Desmopressin (1 microM) did not affect the response to electrical stimulation. At 37 degrees C, the vasopressin-induced potentiation was abolished by the purinoceptor antagonist PPADS (30 microM), increased by phentolamine (1 microM) or prazosin (1 microM) and not modified by yohimbine (1 microM), whilst at 30 degrees C, the potentiation was reduced by phentolamine, yohimbine or PPADS, and was not modified by prazosin. The Ca2+-channel blockers, verapamil (10 microM) and NiCl2 (1 mM), abolished the potentiating effects of vasopressin at 37 degrees C whilst verapamil reduced and NiCl2 abolished this potentiation at 30 degrees C. The inhibitor of nitric oxide synthesis, L-NOARG (100 microM), or endothelium removal did not modify the potentiation by vasopressin at 37 and 30 degrees C. Vasopressin also increased the arterial contraction to the alpha2-adrenoceptor agonist BHT-920 (10 microM) and to ATP (2 mM) at 30 and 37 degrees C, but it did not modify the contraction to noradrenaline (1 microM) at either temperature. These results suggest that in cutaneous (ear) arteries, vasopressin potentiaties sympathetic vasoconstriction to a greater extent at 30 than at 37 degrees C by activating vasopressin V1 receptors and Ca2+ channels at both temperatures. At 37 degrees C, the potentiation appears related to activation of the purinoceptor component and, at 30 degrees C, to activation of both purinoceptor and alpha2-adrenoceptor components of the sympathetic response.  (+info)

A man with a prosthetic ear and multiple pulmonary nodules. (8/904)

Basal cell carcinoma is generally regarded as a relatively indolent tumor easily controlled with local therapy. When neglected or inadequately treated this tumor can become locally aggressive and in rare circumstances metastasize. This report documents a case of basal cell carcinoma metastatic to the lung that resulted in rapidly progressive respiratory failure and death.  (+info)