A novel screening for inhibitors of a pleiotropic drug resistant pump, Pdr5, in Saccharomyces cerevisiae. (1/107)

Yeast is an excellent model system of eukaryotes for the study of molecular mechanisms of ATP-binding cassette transporters. Pdr5 protein is a yeast Saccharomyces cerevisiae ATP-binding cassette transporter conferring resistance to several unrelated drugs. Here, we described a novel drug screening system designated to detect compounds that inhibit the function of Pdr5. An indicator strain with increased drug sensitivity was constructed with an ergosterol-deficient background (delta syr1/erg3 null mutation). The sensitivity of the indicator strain (delta syr1/erg3 delta pdr5 delta snq2) to the Pdr5 substrates, cycloheximide and cerulenin, was increased 16-fold and 4-fold against wild type, respectively. The screening system is mainly based on the growth inhibition of the PDR5-overexpressed indicator strain with the combination of a sample and cycloheximide or cerulenin. The effect of an mdr inhibitor, FK506 on the screening system was clearly detected even at a low concentration (approximately 0.5 microg/ml). In addition, accumulation of rhodamine 6G in the cells was detected as a result of Pdr5 inhibition by FK506. These results indicated that the screening system is useful for a sensitive screening of Pdr5-specific inhibitors with low toxicity.  (+info)

Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans. (2/107)

CaMDR1 encodes a major facilitator superfamily (MFS) protein in Candida albicans whose expression has been linked to azole resistance and which is frequently encountered in this human pathogenic yeast. In this report we have overexpressed CaMdr1p in Sf9 insect cells and demonstrated for the first time that it can mediate methotrexate (MTX) and fluconazole (FLC) transport. MTX appeared to be a better substrate for CaMdr1p among these two tested drugs. Due to severe toxicity of these drugs to insect cells, further characterization of CaMdr1p as a drug transporter could not be done with this system. Therefore, as an alternative, CaMdr1p and Cdr1p, which is an ABC protein (ATP binding cassette) also involved in azole resistance in C. albicans, were independently expressed in a common hypersensitive host JG436 of Saccharomyces cerevisiae. This allowed a better comparison between the functionality of the two export pumps. We observed that while both FLC and MTX are effluxed by CaMdr1p, MTX appeared to be a poor substrate for Cdr1p. JG436 cells expressing Cdr1p thus conferred resistance to other antifungal drugs but remained hypersensitive to MTX. Since MTX is preferentially transported by CaMdr1p, it can be used for studying the function of this MFS protein.  (+info)

Multidrug-resistant Trichosporon asahii infection of nongranulocytopenic patients in three intensive care units. (3/107)

Trichosporon asahii (Trichosporon beigelii) infections are rare but have been associated with a wide spectrum of clinical manifestations, ranging from superficial involvement in immunocompetent individuals to severe systemic disease in immunocompromised patients. We report on the recent recovery of T. asahii isolates with reduced susceptibility in vitro to amphotericin B (AMB), flucytosine, and azoles from six nongranulocytopenic patients who exhibited risk factors and who developed either superficial infections (four individuals) or invasive infections (two individuals) while in intensive care units. The latter two patients responded clinically and microbiologically to AMB treatment. All six isolates were closely related according to random amplified polymorphic DNA studies and showed 71% similarity by amplified fragment length polymorphism analysis, suggesting a common nosocomial origin. We also review the literature pertaining to T. asahii infections and discuss the salient characteristics of this fungus and recent taxonomic proposals for the genus.  (+info)

Amphotericin B: spectrum and resistance. (4/107)

Amphotericin B is a polyene macrolide antibiotic derived from the actinomycete Streptomyces nodosus. Of the 200 known polyene agents, amphotericin B is the only one with toxicities that are sufficiently limited to permit intravenous administration. All polyenes have a common mechanism of action in that they preferentially bind to ergosterol, the primary sterol in the fungal cell membrane. The consequence of this binding includes disruption of the osmotic integrity of the membrane, with leakage of intracellular potassium and magnesium, and also the disruption of oxidative enzymes in target cells. Amphotericin B has a relatively broad spectrum of action and is useful in treating cases of candidosis, cryptococcosis, histoplasmosis, blastomycosis, paracoccidioidomycosis, coccidioidomycosis, aspergillosis, extracutaneous sporotrichosis and mucormycosis, and some cases of hyalohyphomycosis and phaeohyphomycosis. Resistance (MIC > 2 mg/L) tends to be species-dependent and emerges uncommonly and slowly in isolates from patients treated with amphotericin B. These include some individual strains of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaniae, which may acquire resistance during treatment. Some isolates of Scedosporium apiospermum, Fusarium spp. and Sporothrix schenckii also show primary resistance, whereas all strains of Scedosporium prolificans demonstrate resistance. The main problems associated with the use of conventional amphotericin B have always been due to its poor aqueous solubility and toxicity rather than antifungal resistance.  (+info)

Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. (5/107)

The development of assays for quantitative analysis of the relative transcript levels of ABC transporter genes by real-time reverse transcription-PCR (RT-PCR) might provide important information about multidrug resistance in filamentous fungi. Here, we evaluate the potential of real-time RT-PCR to quantify the relative transcript levels of ABC transporter Atr genes from Aspergillus nidulans. The AtrA to AtrD genes showed different and higher levels in the presence of structurally unrelated drugs, such as camptothecin, imazalil, itraconazole, hygromycin, and 4-nitroquinoline oxide. We also verified the relative transcript levels of the Atr genes in the A. nidulans imazalil-resistant mutants. These genes displayed a very complex pattern in different ima genetic backgrounds. The imaB mutant has higher basal transcript levels of AtrB and -D than those of the wild-type strain. The levels of these two genes are comparable when the imaB mutant is grown in the presence and absence of imazalil. The imaC, -D, and -H mutants have higher basal levels of AtrA than that of the wild type. The same behavior is observed for the relative transcript levels of AtrB in the imaG mutant background.  (+info)

New insights into the pleiotropic drug resistance network from genome-wide characterization of the YRR1 transcription factor regulation system. (6/107)

Yrr1p is a recently described Zn(2)Cys(6) transcription factor involved in the pleiotropic drug resistance (PDR) phenomenon. It is controlled in a Pdr1p-dependent manner and is autoregulated. We describe here a new genome-wide approach to characterization of the set of genes directly regulated by Yrr1p. We found that the time-course production of an artificial chimera protein containing the DNA-binding domain of Yrr1p activated the 15 genes that are also up-regulated by a gain-of-function mutant of Yrr1p. Gel mobility shift assays showed that the promoters of the genes AZR1, FLR1, SNG1, YLL056C, YLR346C, and YPL088W interacted with Yrr1p. The putative consensus Yrr1p binding site deduced from these experiments, (T/A)CCG(C/T)(G/T)(G/T)(A/T)(A/T), is strikingly similar to the PDR element binding site sequence recognized by Pdr1p and Pdr3p. The minor differences between these sequences are consistent with Yrr1p and Pdr1p and Pdr3p having different sets of target genes. According to these data, some target genes are directly regulated by Pdr1p and Pdr3p or by Yrr1p, whereas some genes are indirectly regulated by the activation of Yrr1p. Some genes, such as YOR1, SNQ2, and FLR1, are clearly directly controlled by both classes of transcription factor, suggesting an important role for the corresponding membrane proteins.  (+info)

A dominant allele of PDR1 alters transition metal resistance in yeast. (7/107)

A yeast mutant was found to have defective growth on low iron medium despite a normal high affinity iron transport system. The phenotype results from a gain of function mutation in PDR1, which encodes a transcription factor that acts as a regulator of pleiotropic drug resistance in Saccharomyces cerevisiae. The mutant allele, PDR1(R821H), was found to result in increased expression of at least 19 genes, three of which are ATP-binding cassette (ABC) transporters. Expression of at least six genes was required to show the low iron growth defect. Wild type cells transformed with the PDR1(R821H) allele or a PDR1 dominant allele (PDR1-3) showed the low iron growth defect as well as increased resistance to drugs such as cycloheximide and oligomycin. Transformation of PDR1(R821H) into Deltaccc1 cells, which were previously shown to have increased sensitivity to high iron medium because of defective vacuolar iron storage (Li, L., Chen, O. S., Ward, D. M., and Kaplan, J. (2001) J. Biol. Chem. 276, 29515-29519), conferred resistance to high iron medium. Cells expressing PDR1(R821H) also showed increased resistance to copper and manganese because of increased metal export. These results suggest that expression of PDR1-regulated genes affects both efflux and storage of transition metals.  (+info)

ABC transporters and azole susceptibility in laboratory strains of the wheat pathogen Mycosphaerella graminicola. (8/107)

Laboratory strains of Mycosphaerella graminicola with decreased susceptibilities to the azole antifungal agent cyproconazole showed a multidrug resistance phenotype by exhibiting cross-resistance to an unrelated chemical, cycloheximide or rhodamine 6G, or both. Decreased azole susceptibility was found to be associated with either decreased or increased levels of accumulation of cyproconazole. No specific relationship could be observed between azole susceptibility and the expression of ATP-binding cassette (ABC) transporter genes MgAtr1 to MgAtr5 and the sterol P450 14alpha-demethylase gene, CYP51. ABC transporter MgAtr1 was identified as a determinant in azole susceptibility since heterologous expression of the protein reduced the azole susceptibility of Saccharomyces cerevisiae and disruption of MgAtr1 in one specific M. graminicola laboratory strain with constitutive MgAtr1 overexpression restored the level of susceptibility to cyproconazole to wild-type levels. However, the level of accumulation in the mutant with an MgAtr1 disruption did not revert to the wild-type level. We propose that variations in azole susceptibility in laboratory strains of M. graminicola are mediated by multiple mechanisms.  (+info)