15N-labelling and preliminary heteronuclear NMR study of Desulfovibrio vulgaris Hildenborough cytochrome c553. (1/191)

When using heteronuclear NMR, 15N-labelling is necessary for structural analysis, dynamic studies and determination of complex formation. The problems that arise with isotopic labelling of metalloproteins are due to their complex maturation process, which involves a large number of factors. Cytochromes c are poorly expressed in Escherichia coli and the overexpression that is necessary for 15N-labelling, requires an investigation of the expression host and special attention to growth conditions. We have succeeded in the heterologous expression and the complete and uniform isotopic 15N-labelling of the cytochrome c553 from Desulfovibrio vulgaris Hildenborough, in a sulphate-reducing bacterium, D. desulfuricans G200, by using a growth medium combining 15N-ammonium chloride and 15N-Celtone. These conditions allowed us to obtain approximately 0.8 mg x L-1 of pure labelled cytochrome c553. 1H and 15N-assignments for both the oxidized and the reduced states of cytochrome c553 were obtained from two-dimensional heteronuclear experiments. Pseudocontact effects due to the haem Fe3+ have been analysed for the first time through 15N and 1H chemical shifts in a c-type cytochrome.  (+info)

Carboxy-terminal processing of the large subunit of [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757. (2/191)

hydA and hydB, the genes encoding the large (46-kDa) and small (13. 5-kDa) subunits of the periplasmic [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757, have been cloned and sequenced. The deduced amino acid sequence of the genes product showed complete identity to the sequence of the well-characterized [Fe] hydrogenase from the closely related species Desulfovibrio vulgaris Hildenborough (G. Voordouw and S. Brenner, Eur. J. Biochem. 148:515-520, 1985). The data show that in addition to the well-known signal peptide preceding the NH2 terminus of the mature small subunit, the large subunit undergoes a carboxy-terminal processing involving the cleavage of a peptide of 24 residues, in agreement with the recently reported data on the three-dimensional structure of the enzyme (Y. Nicolet, C. Piras, P. Legrand, E. C. Hatchikian, and J. C. Fontecilla-Camps, Structure 7:13-23, 1999). We suggest that this C-terminal processing is involved in the export of the protein to the periplasm.  (+info)

Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics. (3/191)

A new method is presented for simulating the simultaneous binding equilibrium of electrons and protons on protein molecules, which makes it possible to study the full equilibrium thermodynamics of redox and protonation processes, including electron-proton coupling. The simulations using this method reflect directly the pH and electrostatic potential of the environment, thus providing a much closer and realistic connection with experimental parameters than do usual methods. By ignoring the full binding equilibrium, calculations usually overlook the twofold effect that binding fluctuations have on the behavior of redox proteins: first, they affect the energy of the system by creating partially occupied sites; second, they affect its entropy by introducing an additional empty/occupied site disorder (here named occupational entropy). The proposed method is applied to cytochrome c3 of Desulfovibrio vulgaris Hildenborough to study its redox properties and electron-proton coupling (redox-Bohr effect), using a continuum electrostatic method based on the linear Poisson-Boltzmann equation. Unlike previous studies using other methods, the full reduction order of the four hemes at physiological pH is successfully predicted. The sites more strongly involved in the redox-Bohr effect are identified by analysis of their titration curves/surfaces and the shifts of their midpoint redox potentials and pKa values. Site-site couplings are analyzed using statistical correlations, a method much more realistic than the usual analysis based on direct interactions. The site found to be more strongly involved in the redox-Bohr effect is propionate D of heme I, in agreement with previous studies; other likely candidates are His67, the N-terminus, and propionate D of heme IV. Even though the present study is limited to equilibrium conditions, the possible role of binding fluctuations in the concerted transfer of protons and electrons under nonequilibrium conditions is also discussed. The occupational entropy contributions to midpoint redox potentials and pKa values are computed and shown to be significant.  (+info)

Equilibrium unfolding of a small low-potential cytochrome, cytochrome c553 from Desulfovibrio vulgaris. (4/191)

To understand general aspects of stability and folding of c-type cytochromes, we have studied the folding characteristics of cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). This cytochrome is structurally similar but lacks sequence homology to other heme proteins; moreover, it has an abnormally low reduction potential. Unfolding of oxidized and reduced cytochrome c553 by guanidine hydrochloride (GuHCl) was monitored by circular dichroism (CD) and Soret absorption; the same unfolding curves were obtained with both methods supporting that cytochrome c553 unfolds by an apparent two-state process. Reduced cytochrome c553 is 7(3) kJ/mol more stable than the oxidized form; accordingly, the reduction potential of unfolded cytochrome c553 is 100(20) mV more negative than that of the folded protein. In contrast to many other unfolded cytochrome c proteins, upon unfolding at pH 7.0 both oxidized and reduced heme in cytochrome c553 become high-spin. The lack of heme misligation in unfolded cytochrome c553 implies that its unfolded structure is less constrained than those of cytochromes c with low-spin, misligated hemes.  (+info)

Evidence for the presence of an F-type ATP synthase involved in sulfate respiration in Desulfovibrio vulgaris. (5/191)

Using a library of genomic DNA from Desulfovibrio vulgaris Miyazaki F, a strict anaerobe, and two synthetic deoxyoligonucleotide probes designed for F-type ATPases, the genes for open reading frames (ORFs) 1 to 5 were cloned and sequenced. The predicted protein sequences of the gene products indicate that they are composed of 172, 488, 294, 471, and 134 amino acids, respectively, and that they share considerable identity at the amino acid level with delta, alpha, gamma, beta, and epsilon subunits found in other F-type ATPases, respectively. Furthermore, a component carrying ATPase activity was partially purified from the cytoplasmic membrane fraction of the D. vulgaris Miyazaki F cells. The N-terminal amino acid sequences of three major polypeptides separated by sodium dodecyl sulfate-12% polyacrylamide gel electrophoresis were identical to those of the products predicted by the sequences of ORF-2, ORF-3, and ORF-4, suggesting that an F-type ATPase is functioning in the D. vulgaris Miyazaki F cytoplasmic membrane. The amount of the F-type ATPase produced in the D. vulgaris Miyazaki F cells is similar to that in the Escherichia coli cells cultured aerobically. It indicates that the enzyme works as an ATP synthase in the D. vulgaris Miyazaki F cells in connection with sulfate respiration.  (+info)

Adenylylsulfate reductases from archaea and bacteria are 1:1 alphabeta-heterodimeric iron-sulfur flavoenzymes--high similarity of molecular properties emphasizes their central role in sulfur metabolism. (6/191)

Highly active adenylylsulfate (APS) reductase was isolated under N(2)/H(2) from sulfate-reducing and sulfide-oxidizing bacteria and archaea. It was a 1:1 alphabeta-heterodimer of molecular mass approximately 95 kDa, and two subunits (alpha approximately 75, beta approximately 20 kDa). The specific activity was 11-14 micromol (min mg)(-1); cofactor analysis revealed 0.96+/-0.05 FAD, 7.5+/-0.1 Fe and 7.9+/-0.25 S(2-). The photochemically reduced enzyme had a multiline EPR spectrum resulting from two interacting [4Fe-4S] centers. The properties of the different APS reductases were remarkably similar, although the enzyme is involved in different metabolic pathways and was isolated from phylogenetically far separated organisms. A structural model is proposed, with FAD bound to the alpha-subunit, and two [4Fe-4S] centers located in close proximity on the beta-subunit.  (+info)

X-ray structure of Escherichia coli pyridoxine 5'-phosphate oxidase complexed with FMN at 1.8 A resolution. (7/191)

BACKGROUND: Escherichia coli pyridoxine 5'-phosphate oxidase (PNPOx) catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate (PLP), a cofactor used by many enzymes involved in amino acid metabolism. The enzyme oxidizes either the 4'-hydroxyl group of pyridoxine 5'-phosphate (PNP) or the 4'-primary amine of pyridoxamine 5'-phosphate (PMP) to an aldehyde. PNPOx is a homodimeric enzyme with one flavin mononucleotide (FMN) molecule non-covalently bound to each subunit. A high degree of sequence homology among the 15 known members of the PNPOx family suggests that all members of this group have similar three-dimensional folds. RESULTS: The crystal structure of PNPOx from E. coli has been determined to 1.8 A resolution. The monomeric subunit folds into an eight-stranded beta sheet surrounded by five alpha-helical structures. Two monomers related by a twofold axis interact extensively along one-half of each monomer to form the dimer. There are two clefts at the dimer interface that are symmetry-related and extend from the top to the bottom of the dimer. An FMN cofactor that makes interactions with both subunits is located in each of these two clefts. CONCLUSIONS: The structure is quite similar to the recently deposited 2.7 A structure of Saccharomyces cerevisiae PNPOx and also, remarkably, shares a common structural fold with the FMN-binding protein from Desulfovibrio vulgaris and a domain of chymotrypsin. This high-resolution E. coli PNPOx structure permits predictions to be made about residues involved in substrate binding and catalysis. These predictions provide testable hypotheses, which can be answered by making site-directed mutants.  (+info)

Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria. (8/191)

The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 +/- 3 degrees C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, V(max), ranged from 2.4 +/- 0.2 micromol of sulfate/mg (dry weight) of SRB. h(-1)) at 0.25 mM sulfate to 5.0 +/- 1.1 micromol of sulfate/mg (dry weight) of SRB. h(-1) at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, V(max) was 1.6 +/- 0.2 micromol of sulfate/mg (dry weight) of SRB. h(-1) at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 +/- 0.003 mg (dry weight) of cells/ml. min(-1) for the mixed culture and 0.137 +/- 0.016 mg (dry weight) of cells/ml. min(-1) (U(0) = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source.  (+info)