Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. (1/365)

We analyzed changes in bacterioplankton morphology and composition during enhanced protozoan grazing by image analysis and fluorescent in situ hybridization with group-specific rRNA-targeted oligonucleotide probes. Enclosure experiments were conducted in a small, fishless freshwater pond which was dominated by the cladoceran Daphnia magna. The removal of metazooplankton enhanced protozoan grazing pressure and triggered a microbial succession from fast-growing small bacteria to larger grazing-resistant morphotypes. These were mainly different types of filamentous bacteria which correlated in biomass with the population development of heterotrophic nanoflagellates (HNF). Small bacterial rods and cocci, which showed increased proportion after removal of Daphnia and doubling times of 6 to 11 h, belonged nearly exclusively to the beta subdivision of the class Proteobacteria and the Cytophaga-Flavobacterium cluster. The majority of this newly produced bacterial biomass was rapidly consumed by HNF. In contrast, the proportion of bacteria belonging to the gamma and alpha subdivisions of the Proteobacteria increased throughout the experiment. The alpha subdivision consisted mainly of rods that were 3 to 6 microm in length, which probably exceeded the size range of bacteria edible by protozoa. Initially, these organisms accounted for less than 1% of total bacteria, but after 72 h they became the predominant group of the bacterial assemblage. Other types of grazing-resistant, filamentous bacteria were also found within the beta subdivision of Proteobacteria and the Cytophaga-Flavobacterium cluster. We conclude that the predation regimen is a major structuring force for the bacterial community composition in this system. Protozoan grazing resulted in shifts of the morphological as well as the taxonomic composition of the bacterial assemblage. Grazing-resistant filamentous bacteria can develop within different phylogenetic groups of bacteria, and formerly underepresented taxa might become a dominant group when protozoan predation is the major selective pressure.  (+info)

Heterogeneity and differential expression under hypoxia of two-domain hemoglobin chains in the water flea, Daphnia magna. (2/365)

Hemoglobin (Hb) purified from the water flea, Daphnia magna, reared under hypoxia was analyzed by two-dimensional gel electrophoresis. The Hb was shown to be composed of six major subunit chain species (designated as DHbA to DHbF). The NH2-terminal amino acid sequences of DHbA, DHbB, DHbC, and DHbF are different from one another, indicating that at least four Hb genes are present in D. magna. The NH2-terminal amino acid sequences of DHbD and DHbE are the same as those of DHbA and DHbB, respectively. The six Hb chains were also found in the animal reared under normoxia in small amounts and with altered composition; the extent of decrease under normoxia was higher in the amounts of DHbC, DHbD, and DHbF than those of others. These results indicate that the Hb genes are differentially regulated by the ambient oxygen concentration. Four Hb genes constituting a cluster in the order, dhb4, dhb3, dhb1, and dhb2, were found on the chromosome of D. magna. The complete nucleotide sequences of the dhb1, dhb2, and dhb3 genes and their cDNAs showed that the genes have a seven-exon, six-intron structure. The structure consists of an intron separating an exon encoding a secretory signal sequence, two large repeated regions of a three-exon, two-intron structure that encode each a domain containing a heme-binding site, and an intron bridging the two repeated regions. The deduced amino acid sequences of the gene products showed higher than 79% identity to one another and showed unique features conserved in D. magna Hb chains. The analysis also suggested that DHbB (or DHbE), DHbF, and DHbC are encoded by the dhb1, dhb2, and dhb3 genes, respectively.  (+info)

Model ecosystem evaluation of the environmental impacts of the veterinary drugs phenothiazine, sulfamethazine, clopidol, and diethylstilbestrol. (3/365)

Four veterinary drugs of dissimilar chemical structures were evaluated for environmental stability and penchant for bioaccumulation. The techniques used were (1) a model aquatic ecosystem (3 days) and (2) a model feedlot ecosystem (33 days) in which the drugs were introduced via the excreta of chicks or mice. The model feedlot ecosystem was supported by metabolism cage studies to determine the amount and the form of the drug excreted by the chicks or mice. Considerable quantities of all the drugs were excreted intact or as environmentally short-lived conjugates. Diethylstilbestrol (DES) and Clopidol were the most persistent molecules, but only DES bioaccumulated to any appreciable degree. Phenothiazine was very biodegradable; sulfamethazine was relatively biodegradable and only accumulated in the organisms to very low levels. Data from the aquatic model ecosystem demonstrated a good correlation between the partition coefficients of the drugs and their accumulation in the fish.  (+info)

Daphnia pulex didomain hemoglobin: structure and evolution of polymeric hemoglobins and their coding genes. (4/365)

The high-molecular-weight extracellular hemoglobin of Daphnia pulex is composed of at least three different didomain globin chains. The primary structure of one of these chains was determined at the protein and cDNA levels. Each globin domain of the polypeptide chain displays the standard structural characteristics. The first domain is preceded by a 30-residue extension containing an 18-residue unprecedented threonine-rich segment and a 12-residue preA segment which is homologous to the preA segments of other nonvertebrate globin chains. Both domains are linked together by a preA' segment, which is homologous to other preA segments and lacks the threonine-rich segment. Dimerization of the globin chains by the formation of a disulphide bridge linking the unique cysteines near the amino-termini results in a covalent, vertebrate-like tetradomain structure. The flexible amino-terminal extension most likely facilitates dimerization. The gene coding for this globin chain is interrupted by six small introns. Each domain displays two intradomain introns at the conserved positions B12.2 and G7.0. A precoding intron occurs at position preA(-27.0) and a bridge intron at occurs preA'(-13.2). We propose a crossover event as the most likely mechanism for duplication. Arthropod globin trees reflect the added effects of gene diversification, gene duplication, and species evolution. The position of monodomain intracellular globins in the tree suggests that they resemble the ancestral globin more than the derived didomain extracellular globins do.  (+info)

Genetic differentiation among Oregon lake populations of the Daphnia pulex species complex. (5/365)

Gene flow among invertebrate populations inhabiting bodies of nonflowing freshwater such as ponds or lakes must at some stage involve transport across habitat unsuitable for adult stages. Consequently the potential for interpopulational differentiation is high in these species, yet empirical studies of lake populations of Cladocerans such as Daphnia have failed to reveal high levels of genetic distinctiveness among populations and have led to much speculation about how these populations exchange genes and remain cohesive evolutionary units. In this study we surveyed 42 Oregon lake populations of Daphnia from the D. pulex species complex for genetic variation within the mitochondrial DNA control region. We have used this data to test the relative abilities of various ecological factors to explain the observed patterns in genetic differentiation among lakes. Despite limited genetic variation detected among our samples--11 very similar RFLP-defined mtDNA genotypes from 388 individuals--analyses of nucleotide variance using analogs to Wright's F statistics indicate that when multilake populations are defined in terms of the river drainage basin to which they belong, strong and significant amounts of among-population genetic variation can be detected at this locus (F(ST) estimates between 0.5 and 0.6). In contrast, we fail to detect consistent significant among-population variation when populations are defined on the basis of regional physical geography, bird migratory flyways, or lake trophic status. The manner in which the data are compiled, that is, whether RFLPs or nucleotide sequences are used, has little effect on the overall conclusions, yet it is clear that nucleotide sequence data would lower the standard errors of F(ST) estimates. We propose that periodic widescale flooding during the late Pleistocene may be an important mechanism to homogenize genetic differences among lake Daphnia continent-wide south of the southern-most extent of Pleistocene glaciation.  (+info)

Avoiding the cost of males in obligately asexual Daphnia pulex (Leydig). (6/365)

Asexual organisms are thought to gain an advantage by avoiding the cost of producing males. In the cladoceran Daphnia pulex (Leydig), male production is determined by the environment and is independent of the origin of the asexual obligate parthenogens from the sexual cyclical parthenogens. If there is a cost to producing males, successful obligate parthenogens should have reduced or eliminated male production. Field and laboratory observations showed that obligate parthenogens have much-reduced male production compared to cyclical parthenogens. Although the reduction or elimination of males in the obligate parthenogens suggests that the cost of males is avoided, the coexistence of sexual and asexual forms of D. pulex may be partially explained by cyclical parthenogens compensating for the cost of males by having greater fecundity. In addition, the absence of a mating constraint for the obligate parthenogens may favour an increased allocation to asexual diapausing eggs earlier in the season compared to the cyclical parthenogens which require mating with males to produce sexual diapausing eggs. No difference in the production of diapausing eggs was observed, probably because males were abundant in populations of cyclical parthenogens and do not appear to limit the production of sexual diapausing eggs. D. pulex is a useful system for determining the ecological consequences of abandoning sexual reproduction and explaining the coexistence of sexual and asexual forms of a species.  (+info)

Molecular systematics of European Hyalodaphnia: the role of contemporary hybridization in ancient species. (7/365)

We examined phylogenetic relationships among Daphnia using mitochondrial DNA (mtDNA) sequences from the small subunit ribosomal RNA (12S), cytochrome c oxidase subunit I and nuclear DNA sequences from the first and second internal transcribed spacer representing 1612 base positions. Phylogenetic analyses using several species of the three main Daphnia subgenera, Ctenodaphnia, Hyalodaphnia and Daphnia, revealed that the Hyalodaphnia are a monophyletic sister group of the Daphnia. Most Hyalodaphnia species occur on one continent, whereas only three are found in North America and Europe. Endemicity of species is associated with variation in thermal tolerance and habitat differentiation. Although many species of the Hyalodaphnia are known to hybridize in nature, mtDNA divergence is relatively high ca. 9%) compared to other hybridizing arthropods (ca. 3%). Reproductive isolation in Daphnia seems to evolve significantly slower than genetic isolation. We related these findings to what is known about the ecology and genetics of Daphnia in order to better understand the evolutionary diversification of lineages. The relationship of these data to phylogenetic patterns is discussed in the context of speciation processes in Daphnia.  (+info)

Flavobacterium psychrophilum, invasion into and shedding by rainbow trout Oncorhynchus mykiss. (8/365)

The infection route of Flavobacterium psychrophilum into rainbow trout Oncorhynchus mykiss was studied using bath and cohabitation challenges as well as oral challenge with live feed as a vector. Additionally, the number of bacterial cells shed by infected fish into the surrounding water was determined in the cohabitation experiment and in challenge experiments at 3 different water temperatures. The experiments showed that skin and skin mucus abrasion dramatically enhanced the invasion of F. psychrophilum into the affected fish in bath and cohabitation challenges. Disruption of the skin is discussed as an important invasion route for F. psychrophilum into the fish. The shedding rate of F. psychrophilum by infected fish was associated with water temperature and the mortality of the infected fish. High numbers of F. psychrophilum cells were released into the water by dead rainbow trout during a long time period compared to the numbers of cells shed by live fish. The results emphasise the importance of removing dead and moribund fish from rearing tanks in order to diminish the infection pressure against uninfected fish in commercial fish farms. In immunohistochemical examinations of organs and tissues of orally infected fish, F. psychrophilum cells were detected in only 1 fish out of 31 studied. Mortality of the orally challenged fish was not observed in the experiment.  (+info)