The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. (1/1655)

The development of new strategies for the in vivo modification of eukaryotic genomes has become an important objective of current research. Site-specific recombination has proven useful, as it allows controlled manipulation of murine, plant, and yeast genomes. Here we provide the first evidence that the prokaryotic site-specific recombinase (beta-recombinase), which catalyzes only intramolecular recombination, is active in eukaryotic environments. beta-Recombinase, encoded by the beta gene of the Gram-positive broad host range plasmid pSM19035, has been functionally expressed in eukaryotic cell lines, demonstrating high avidity for the nuclear compartment and forming a clear speckled pattern when assayed by indirect immunofluorescence. In simian COS-1 cells, transient beta-recombinase expression promoted deletion of a DNA fragment lying between two directly oriented specific recognition/crossing over sequences (six sites) located as an extrachromosomal DNA substrate. The same result was obtained in a recombination-dependent lacZ activation system tested in a cell line that stably expresses the beta-recombinase protein. In stable NIH/3T3 clones bearing different number of copies of the target sequences integrated at distinct chromosomal locations, transient beta-recombinase expression also promoted deletion of the intervening DNA, independently of the insertion position of the target sequences. The utility of this new recombination tool for the manipulation of eukaryotic genomes, used either alone or in combination with the other recombination systems currently in use, is discussed.  (+info)

Xer site-specific recombination. DNA strand rejoining by recombinase XerC. (2/1655)

Xer site-specific recombination functions in the stable maintenance of circular replicons in Escherichia coli. Each of two related recombinase proteins, XerC and XerD, cleaves a specific pair of DNA strands, exchanges them, and rejoins them to the partner DNA molecule during a complete recombination reaction. The rejoining activity of recombinase XerC has been analyzed using isolated covalent XerC-DNA complexes resulting from DNA cleavage reactions upon Holliday junction substrates. These covalent protein-DNA complexes are competent in the rejoining reaction, demonstrating that covalently bound XerC can catalyze strand rejoining in the absence of other proteins. This contrasts with a recombinase-mediated cleavage reaction, which requires the presence of both recombinases, the recombinase mediating catalysis at any given time requiring activation by the partner recombinase. In a recombining nucleoprotein complex, both cleavage and rejoining can occur prior to dissociation of the complex.  (+info)

Telomere loss in somatic cells of Drosophila causes cell cycle arrest and apoptosis. (3/1655)

Checkpoint mechanisms that respond to DNA damage in the mitotic cell cycle are necessary to maintain the fidelity of chromosome transmission. These mechanisms must be able to distinguish the normal telomeres of linear chromosomes from double-strand break damage. However, on several occasions, Drosophila chromosomes that lack their normal telomeric DNA have been recovered, raising the issue of whether Drosophila is able to distinguish telomeric termini from nontelomeric breaks. We used site-specific recombination on a dispensable chromosome to induce the formation of a dicentric chromosome and an acentric, telomere-bearing, chromosome fragment in somatic cells of Drosophila melanogaster. The acentric fragment is lost when cells divide and the dicentric breaks, transmitting a chromosome that has lost a telomere to each daughter cell. In the eye imaginal disc, cells with a newly broken chromosome initially experience mitotic arrest and then undergo apoptosis when cells are induced to divide as the eye differentiates. Therefore, Drosophila cells can detect and respond to a single broken chromosome. It follows that transmissible chromosomes lacking normal telomeric DNA nonetheless must possess functional telomeres. We conclude that Drosophila telomeres can be established and maintained by a mechanism that does not rely on the terminal DNA sequence.  (+info)

Cytokinin activation of Arabidopsis cell division through a D-type cyclin. (4/1655)

Cytokinins are plant hormones that regulate plant cell division. The D-type cyclin CycD3 was found to be elevated in a mutant of Arabidopsis with a high level of cytokinin and to be rapidly induced by cytokinin application in both cell cultures and whole plants. Constitutive expression of CycD3 in transgenic plants allowed induction and maintenance of cell division in the absence of exogenous cytokinin. Results suggest that cytokinin activates Arabidopsis cell division through induction of CycD3 at the G1-S cell cycle phase transition.  (+info)

Regulation of V(D)J recombination by transcriptional promoters. (5/1655)

Enhancer elements potentiate the rearrangement of antigen receptor loci via changes in the accessibility of gene segment clusters to V(D)J recombinase. Here, we show that enhancer activity per se is insufficient to target T-cell receptor beta miniloci for DbetaJbeta recombination. Instead, a promoter situated 5' to Dbeta1 (PDbeta) was required for efficient rearrangement of chromosomal substrates. A critical function for promoters in regulating gene segment accessibility was further supported by the ability of heterologous promoters to direct rearrangement of enhancer-containing substrates. Importantly, activation of a synthetic tetracycline-inducible promoter (Ptet) positioned upstream from the Dbeta gene segment was sufficient to target recombination of miniloci lacking a distal enhancer element. The latter result suggests that DNA loops, generated by interactions between flanking promoter and enhancer elements, are not required for efficient recognition of chromosomal gene segments by V(D)J recombinase. Unexpectedly, the Ptet substrate exhibited normal levels of rearrangement despite its retention of a hypermethylated DNA status within the DbetaJbeta cluster. Together, our findings support a model in which promoter activation, rather than intrinsic properties of enhancers, is the primary determinant for regulating recombinational accessibility within antigen receptor loci.  (+info)

Roles of the "dispensable" portions of RAG-1 and RAG-2 in V(D)J recombination. (6/1655)

V(D)J recombination is initiated by introduction of site-specific double-stranded DNA breaks by the RAG-1 and RAG-2 proteins. The broken DNA ends are then joined by the cellular double-strand break repair machinery. Previous work has shown that truncated (core) versions of the RAG proteins can catalyze V(D)J recombination, although less efficiently than their full-length counterparts. It is not known whether truncating RAG-1 and/or RAG-2 affects the cleavage step or the joining step of recombination. Here we examine the effects of truncated RAG proteins on recombination intermediates and products. We found that while truncated RAG proteins generate lower levels of recombination products than their full-length counterparts, they consistently generate 10-fold higher levels of one class of recombination intermediates, termed signal ends. Our results suggest that this increase in signal ends does not result from increased cleavage, since levels of the corresponding intermediates, coding ends, are not elevated. Thus, removal of the "dispensable" regions of the RAG proteins impairs proper processing of recombination intermediates. Furthermore, we found that removal of portions of the dispensable regions of RAG-1 and RAG-2 affects the efficiency of product formation without altering the levels of recombination intermediates. Thus, these evolutionarily conserved sequences play multiple, important roles in V(D)J recombination.  (+info)

Multiple DNA binding activities of the novel site-specific recombinase, Piv, from Moraxella lacunata. (7/1655)

The recombinase, Piv, is essential for site-specific DNA inversion of the type IV pilin DNA segment in Moraxella lacunata and Moraxella bovis. Piv shows significant homology with the transposases of the IS110/IS492 family of insertion elements, but, surprisingly, Piv contains none of the conserved amino acid motifs of the lambda Int or Hin/Res families of site-specific recombinases. Therefore, Piv may mediate site-specific recombination by a novel mechanism. To begin to determine how Piv may assemble a synaptic nucleoprotein structure for DNA cleavage and strand exchange, we have characterized the interaction of Piv with the DNA inversion region of M. lacunata. Gel shift and nuclease/chemical protection assays, competition and dissociation rate analyses, and cooperativity studies indicate that Piv binds two distinct recognition sequences. One recognition sequence, found at multiple sites within and outside of the invertible segment, is bound by Piv protomers with high affinity. The second recognition sequence is located at the recombination cross-over sites at the ends of the invertible element; Piv interacts with this sequence as an oligomer with apparent low affinity. A model is proposed for the role of the different Piv binding sites of the M. lacunata inversion region in the formation of an active synaptosome.  (+info)

DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. (8/1655)

Mammalian cells are protected from the effects of DNA double-strand breaks by end-joining repair. Cells lacking the Xrcc4 protein are hypersensitive to agents that induce DNA double-strand breaks, and are unable to complete V(D)J recombination. The residual repair of broken DNA ends in XRCC4-deficient cells requires short sequence homologies, thus possibly implicating Xrcc4 in end alignment. We show that Xrcc4 binds DNA, and prefers DNA with nicks or broken ends. Xrcc4 also binds to DNA ligase IV and enhances its joining activity. This stimulatory effect is shown to occur at the adenylation of the enzyme. DNA binding of Xrcc4 is correlated with its complementation of the V(D)J recombination defects in XRCC4-deficient cells, but is not required for stimulation of DNA ligase IV. Thus, the ability of Xrcc4 to bind to DNA suggests functions independent of DNA ligase IV.  (+info)