(1/17364) Long-range oxidative damage to DNA: effects of distance and sequence.

INTRODUCTION: Oxidative damage to DNA in vivo can lead to mutations and cancer. DNA damage and repair studies have not yet revealed whether permanent oxidative lesions are generated by charges migrating over long distances. Both photoexcited *Rh(III) and ground-state Ru(III) intercalators were previously shown to oxidize guanine bases from a remote site in oligonucleotide duplexes by DNA-mediated electron transfer. Here we examine much longer charge-transport distances and explore the sensitivity of the reaction to intervening sequences. RESULTS: Oxidative damage was examined in a series of DNA duplexes containing a pendant intercalating photooxidant. These studies revealed a shallow dependence on distance and no dependence on the phasing orientation of the oxidant relative to the site of damage, 5'-GG-3'. The intervening DNA sequence has a significant effect on the yield of guanine oxidation, however. Oxidation through multiple 5'-TA-3' steps is substantially diminished compared to through other base steps. We observed intraduplex guanine oxidation by tethered *Rh(III) and Ru(III) over a distance of 200 A. The distribution of oxidized guanine varied as a function of temperature between 5 and 35 degrees C, with an increase in the proportion of long-range damage (> 100 A) occurring at higher temperatures. CONCLUSIONS: Guanines are oxidized as a result of DNA-mediated charge transport over significant distances (e.g. 200 A). Although long-range charge transfer is dependent on distance, it appears to be modulated by intervening sequence and sequence-dependent dynamics. These discoveries hold important implications with respect to DNA damage in vivo.  (+info)

(2/17364) Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin.

This report demonstrates that Gadd45, a p53-responsive stress protein, can facilitate topoisomerase relaxing and cleavage activity in the presence of core histones. A correlation between reduced expression of Gadd45 and increased resistance to topoisomerase I and topoisomerase II inhibitors in a variety of human cell lines was also found. Gadd45 could potentially mediate this effect by destabilizing histone-DNA interactions since it was found to interact directly with the four core histones. To evaluate this possibility, we investigated the effect of Gadd45 on preassembled mononucleosomes. Our data indicate that Gadd45 directly associates with mononucleosomes that have been altered by histone acetylation or UV radiation. This interaction resulted in increased DNase I accessibility on hyperacetylated mononucleosomes and substantial reduction of T4 endonuclease V accessibility to cyclobutane pyrimidine dimers on UV-irradiated mononucleosomes but not on naked DNA. Both histone acetylation and UV radiation are thought to destabilize the nucleosomal structure. Hence, these results imply that Gadd45 can recognize an altered chromatin state and modulate DNA accessibility to cellular proteins.  (+info)

(3/17364) The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis.

The recently sequenced Saccharomyces cerevisiae genome was searched for a gene with homology to the gene encoding the major human AP endonuclease, a component of the highly conserved DNA base excision repair pathway. An open reading frame was found to encode a putative protein (34% identical to the Schizosaccharomyces pombe eth1(+) [open reading frame SPBC3D6.10] gene product) with a 347-residue segment homologous to the exonuclease III family of AP endonucleases. Synthesis of mRNA from ETH1 in wild-type cells was induced sixfold relative to that in untreated cells after exposure to the alkylating agent methyl methanesulfonate (MMS). To investigate the function of ETH1, deletions of the open reading frame were made in a wild-type strain and a strain deficient in the known yeast AP endonuclease encoded by APN1. eth1 strains were not more sensitive to killing by MMS, hydrogen peroxide, or phleomycin D1, whereas apn1 strains were approximately 3-fold more sensitive to MMS and approximately 10-fold more sensitive to hydrogen peroxide than was the wild type. Double-mutant strains (apn1 eth1) were approximately 15-fold more sensitive to MMS and approximately 2- to 3-fold more sensitive to hydrogen peroxide and phleomycin D1 than were apn1 strains. Elimination of ETH1 in apn1 strains also increased spontaneous mutation rates 9- or 31-fold compared to the wild type as determined by reversion to adenine or lysine prototrophy, respectively. Transformation of apn1 eth1 cells with an expression vector containing ETH1 reversed the hypersensitivity to MMS and limited the rate of spontaneous mutagenesis. Expression of ETH1 in a dut-1 xthA3 Escherichia coli strain demonstrated that the gene product functionally complements the missing AP endonuclease activity. Thus, in apn1 cells where the major AP endonuclease activity is missing, ETH1 offers an alternate capacity for repair of spontaneous or induced damage to DNA that is normally repaired by Apn1 protein.  (+info)

(4/17364) Impaired translesion synthesis in xeroderma pigmentosum variant extracts.

Xeroderma pigmentosum variant (XPV) cells are characterized by a cellular defect in the ability to synthesize intact daughter DNA strands on damaged templates. Molecular mechanisms that facilitate replication fork progression on damaged DNA in normal cells are not well defined. In this study, we used single-stranded plasmid molecules containing a single N-2-acetylaminofluorene (AAF) adduct to analyze translesion synthesis (TLS) catalyzed by extracts of either normal or XPV primary skin fibroblasts. In one of the substrates, the single AAF adduct was located at the 3' end of a run of three guanines that was previously shown to induce deletion of one G by a slippage mechanism. Primer extension reactions performed by normal cellular extracts from four different individuals produced the same distinct pattern of TLS, with over 80% of the products resulting from the elongation of a slipped intermediate and the remaining 20% resulting from a nonslipped intermediate. In contrast, with cellular extracts from five different XPV patients, the TLS reaction was strongly reduced, yielding only low amounts of TLS via the nonslipped intermediate. With our second substrate, in which the AAF adduct was located at the first G in the run, thus preventing slippage from occurring, we confirmed that normal extracts were able to perform TLS 10-fold more efficiently than XPV extracts. These data demonstrate unequivocally that the defect in XPV cells resides in translesion synthesis independently of the slippage process.  (+info)

(5/17364) Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene.

The xeroderma pigmentosum group G (XP-G) gene (XPG) encodes a structure-specific DNA endonuclease that functions in nucleotide excision repair (NER). XP-G patients show various symptoms, ranging from mild cutaneous abnormalities to severe dermatological impairments. In some cases, patients exhibit growth failure and life-shortening and neurological dysfunctions, which are characteristics of Cockayne syndrome (CS). The known XPG protein function as the 3' nuclease in NER, however, cannot explain the development of CS in certain XP-G patients. To gain an insight into the functions of the XPG protein, we have generated and examined mice lacking xpg (the mouse counterpart of the human XPG gene) alleles. The xpg-deficient mice exhibited postnatal growth failure and underwent premature death. Since XPA-deficient mice, which are totally defective in NER, do not show such symptoms, our data indicate that XPG performs an additional function(s) besides its role in NER. Our in vitro studies showed that primary embryonic fibroblasts isolated from the xpg-deficient mice underwent premature senescence and exhibited the early onset of immortalization and accumulation of p53.  (+info)

(6/17364) Analysis of genomic integrity and p53-dependent G1 checkpoint in telomerase-induced extended-life-span human fibroblasts.

Life span determination in normal human cells may be regulated by nucleoprotein structures called telomeres, the physical ends of eukaryotic chromosomes. Telomeres have been shown to be essential for chromosome stability and function and to shorten with each cell division in normal human cells in culture and with age in vivo. Reversal of telomere shortening by the forced expression of telomerase in normal cells has been shown to elongate telomeres and extend the replicative life span (H. Vaziri and S. Benchimol, Curr. Biol. 8:279-282, 1998; A. G. Bodnar et al., Science 279:349-352, 1998). Extension of the life span as a consequence of the functional inactivation of p53 is frequently associated with loss of genomic stability. Analysis of telomerase-induced extended-life-span fibroblast (TIELF) cells by G banding and spectral karyotyping indicated that forced extension of the life span by telomerase led to the transient formation of aberrant structures, which were subsequently resolved in higher passages. However, the p53-dependent G1 checkpoint was intact as assessed by functional activation of p53 protein in response to ionizing radiation and subsequent p53-mediated induction of p21(Waf1/Cip1/Sdi1). TIELF cells were not tumorigenic and had a normal DNA strand break rejoining activity and normal radiosensitivity in response to ionizing radiation.  (+info)

(7/17364) Phosphorylation of the DNA repair protein APE/REF-1 by CKII affects redox regulation of AP-1.

The DNA repair protein apurinic endonuclease (APE/Ref-1) exerts several physiological functions such as cleavage of apurinic/apyrimidinic sites and redox regulation of the transcription factor AP-1, whose activation is part of the cellular response to DNA damaging treatments. Here we demonstrate that APE/Ref-1 is phosphorylated by casein kinase II (CKII). This was shown for both the recombinant APE/Ref-1 protein (Km=0.55 mM) and for APE/Ref-1 expressed in COS cells. Phosphorylation of APE/Ref-1 did not alter the repair activity of the enzyme, whereas it stimulated its redox capability towards AP-1, thus promoting DNA binding activity of AP-1. Inhibition of CKII mediated phosphorylation of APE/Ref-1 blocked mutagen-stimulated increase in AP-1 binding. It also abrogated the induction of c-Jun protein and rendered cells more sensitive to induced DNA damage. Thus, phosphorylation of APE/Ref-1 appears to be involved in regulating the different physiological activities of the enzyme. CKII mediated phosphorylation of APE/Ref-1 and concomitant increase in AP-1 binding activity appears to be a novel mechanism of cellular stress response, forcing transcription of AP-1 target gene(s) the product(s) of which may exert protective function.  (+info)

(8/17364) Differential regulation of p21waf-1/cip-1 and Mdm2 by etoposide: etoposide inhibits the p53-Mdm2 autoregulatory feedback loop.

The Mdm2 protein is frequently overexpressed in human non-seminomatous germ cell tumours and transitional carcinoma of the bladder where it may contribute to tolerance of wtp53. Mdm2 forms an autoregulatory feedback loop with p53; the Mdm2 gene is responsive to transactivation by p53 and once synthesized the Mdm2 protein terminates the p53 response. We show here that the topoisomerase poison etoposide, like ultra violet irradiation, inhibits Mdm2 synthesis. Cytotoxic concentrations of etoposide (IC90 for > 3 h) result in inhibition of Mdm2 induction at both the RNA and protein level. Rapid apoptosis ensues. Global transcription is not inhibited: p21waf-1/cip1 and GADD45 expression increase in a dose dependent manner. Inhibition of Mdm2 synthesis depends on the continuous presence of etoposide, suggesting the DNA damage may prevent transcription. Downregulation of Mdm2 transcript occurs in cells expressing HPV16-E6 suggesting that inhibition of Mdm2 transcription is p53-independent. When cells are -treated with a pulse (1 h) of etoposide and reincubated in drug free medium, Mdm2 synthesis commences immediately after damage is repaired (3 h) and the p53 response is attenuated. Induction of apoptosis and loss of clonogenicity are 3-5-fold lower under pulse treatment conditions. This is the first observation of inhibition of Mdm2 transcription following treatment with topoisomerase (topo II) poisons, a feature that may be useful in tumour types where p53 is tolerated by overexpression of Mdm2.  (+info)