Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex. (1/297)

Protein kinase C (PKC) is an important constituent of the signaling pathways involved in apoptosis. We report here that like staurosporine, withaferin A is a potent inhibitor of PKC. In Leishmania donovani, the inhibition of PKC by withaferin A causes depolarization of DeltaPsim and generates ROS inside cells. Loss of DeltaPsim leads to the release of cytochrome c into the cytosol and subsequently activates caspase-like proteases and oligonucleosomal DNA cleavage. Moreover, in treated cells, oxidative DNA lesions facilitate the stabilization of topoisomerase I-mediated cleavable complexes, which also contribute to DNA fragmentation. However, withaferin A and staurosporine cannot induce cleavable complex formation in vitro with recombinant topoisomerase I nor with nuclear extracts from control cells. Taken together, our results indicate that inhibition of PKC by withaferin A is a central event for the induction of apoptosis and that the stabilization of topoisomerase I-DNA complex is necessary to amplify apoptotic process.  (+info)

Vaccinia topoisomerase mutants illuminate roles for Phe59, Gly73, Gln69 and Phe215. (2/297)

Vaccinia topoisomerase provides a model system for structure-function analysis of the type IB topoisomerase family. Here we performed an alanine scan of eight positions in the beta4 and beta5 strands of the N-terminal domain (Leu57, Ile58, Phe59, Val60, Gly61, Ser62, Gln69 and Gly73) and eight positions in the alpha8-alpha9 loop of the C-terminal catalytic domain (Ser241, Ile242, Ser243, Pro244, Leu245, Pro246, Ser247, and Pro248). Mutants F59A, G73A, and Q69A displayed rate defects in relaxing supercoiled DNA that were attributed to effects on DNA binding rather than transesterification chemistry. Replacing Gln69 conservatively with Asn, Glu or Lys failed to restore relaxation activity. Gln69 is located along a concave DNA-binding surface of the N-terminal domain and it makes direct contact with the +2A base of the 5'-CCCTT/3-GGGAA target site for DNA cleavage. Gly73 is located at the junction between the N-terminal domain and catalytic domain and it is likely to act as a swivel for the large domain movements that coordinate DNA ingress and closure of the topoisomerase clamp around the duplex. Previous alanine scanning had identified Phe215 in helix alpha7 of the catalytic domain as contributing to DNA relaxation activity. Here we find that F215L resembles F215A in its diminished relaxation activity and its sensitivity to inhibition by salt. The Phe215 side chain makes van der Waals contacts to Ile98, Met121 and Phe101, which we propose stabilize a three helix bundle and promote clamp closure.  (+info)

Topoisomerase I-mediated DNA cleavage induced by the minor groove-directed binding of bibenzimidazoles to a distal site. (3/297)

Many agents (e.g. camptothecins, indolocarbazoles, indenoisoquinolines, and dibenzonaphthyridines) stimulate topoisomerase I (TOP1)-mediated DNA cleavage (a behavior termed topoisomerase I poisoning) by interacting with both the DNA and the enzyme at the site of cleavage (typically by intercalation between the -1 and +1 base-pairs). The bibenzimidazoles, which include Hoechst 33258 and 33342, are a family of DNA minor groove-directed agents that also stimulate topoisomerase I-mediated DNA cleavage. However, the molecular mechanism by which these ligands poison TOP1 is poorly understood. Toward this goal, we have used a combination of mutational, footprinting, and DNA binding affinity analyses to define the DNA binding site for Hoechst 33258 and a related derivative that results in optimal induction of TOP1-mediated DNA cleavage. We show that this DNA binding site is located downstream from the site of DNA cleavage, encompassing the base-pairs from position +4 to +8. The distal nature of this binding site relative to the site of DNA cleavage suggests that minor groove-directed agents like the bibenzimidazoles poison TOP1 via a mechanism distinct from compounds like the camptothecins, which interact at the site of cleavage.  (+info)

DNA cleavage and Trp53 differentially affect SINE transcription. (4/297)

Among the cellular responses observed following treatment with DNA-damaging agents is the activation of Short Interspersed Elements (SINEs; retrotransposable genetic elements that comprise over 10% of the human genome). By placing a human SINE (the Alu element) into murine cells, we have previously shown that DNA-damaging agents such as etoposide can induce both upregulation of SINE transcript levels and SINE retrotransposition. A similarly cytotoxic (but not genotoxic) exposure to vincristine was not associated with SINE activation. Here we demonstrate that multiple other genotoxic exposures are associated with upregulation of SINE transcript levels. By comparing the effects of similarly cytotoxic doses of the topoisomerase II inhibitors etoposide and merbarone, we confirm that DNA strand breakage is specifically associated with SINE induction. By evaluating transcription rate and RNA stability, we demonstrate that SINE induction by genotoxic exposure is associated with transcriptional induction and not with transcript stabilization. Finally we demonstrate that SINE induction by genotoxic stress is mediated by a Trp53-independent pathway, and in fact that Trp53 plays an inhibitory role in attenuating the transcriptional induction of SINE elements following exposure to a genotoxic agent. Together these data support a model in which initial DNA damage can trigger genomic instability due to SINE activation, a response which may be amplified in cancer cells lacking functional TP53.  (+info)

Molecular cloning of apicoplast-targeted Plasmodium falciparum DNA gyrase genes: unique intrinsic ATPase activity and ATP-independent dimerization of PfGyrB subunit. (5/297)

DNA gyrase, a typical type II topoisomerase that can introduce negative supercoils in DNA, is essential for replication and transcription in prokaryotes. The apicomplexan parasite Plasmodium falciparum contains the genes for both gyrase A and gyrase B in its genome. Due to the large sizes of both proteins and the unusual codon usage of the highly AT-rich P. falciparum gyrA (PfgyrA) and PfgyrB genes, it has so far been impossible to characterize these proteins, which could be excellent drug targets. Here, we report the cloning, expression, and functional characterization of full-length PfGyrB and functional domains of PfGyrA. Unlike Escherichia coli GyrB, PfGyrB shows strong intrinsic ATPase activity and follows a linear pattern of ATP hydrolysis characteristic of dimer formation in the absence of ATP analogues. These unique features have not been reported for any known gyrase so far. The PfgyrB gene complemented the E. coli gyrase temperature-sensitive strain, and, together with the N-terminal domain of PfGyrA, it showed typical DNA cleavage activity. Furthermore, PfGyrA contains a unique leucine heptad repeat that might be responsible for dimerization. These results confirm the presence of DNA gyrase in eukaryotes and confer great potential for drug development and organelle DNA replication in the deadliest human malarial parasite, P. falciparum.  (+info)

Restriction endonucleases that bridge and excise two recognition sites from DNA. (6/297)

Most restriction endonucleases bridge two target sites before cleaving DNA: examples include all of the translocating Type I and Type III systems, and many Type II nucleases acting at their sites. A subset of Type II enzymes, the IIB systems, recognise bipartite sequences, like Type I sites, but cut specified phosphodiester bonds near their sites, like Type IIS enzymes. However, they make two double-strand breaks, one either side of the site, to release the recognition sequence on a short DNA fragment; 34 bp long in the case of the archetype, BcgI. It has been suggested that BcgI needs to interact with two recognition sites to cleave DNA but whether this is a general requirement for Type IIB enzymes had yet to be established. Ten Type IIB nucleases were tested against DNA substrates with one or two copies of the requisite sequences. With one exception, they all bridged two sites before cutting the DNA, usually in concerted reactions at both sites. The sites were ideally positioned in cis rather than in trans and were bridged through 3-D space, like Type II enzymes, rather than along the 1-D contour of the DNA, as seen with Type I enzymes. The standard mode of action for the restriction enzymes that excise their recognition sites from DNA thus involves concurrent action at two DNA sites.  (+info)

Antioxidant properties of neohesperidin dihydrochalcone: inhibition of hypochlorous acid-induced DNA strand breakage, protein degradation, and cell death. (7/297)

Neohesperidin dihydrochalcone (NHDC), a non-nutritive sweetening agent, is simply produced by hydrogenation of neohesperidin. The aim of this study is to evaluate the antioxidant and radical scavenging properties of neohesperidin dihydrochalcone and other structurally related compounds (phloridzin, neohesperidin) toward different reactive radical and oxygen species including .ABTS+, .O2-, .OH, H2O2, and HOCl in vitro. NHDC showed remarkable radical scavenging activity against stable radical and reactive oxygen species (ROS) in concentration dependent manner. Especially, NHDC was the most potent inhibitor of H2O2 and HOCl. NHDC showed HOCl scavenging activity of 93.5% and H2O2 scavenging property of 73.5% which was more than those of all the tested compounds including ascorbic acid and BHT. Moreover, NHDC could inhibit protein degradation, plasmid DNA strand cleavage and HIT-T15, HUVEC cell death from HOCl attack while mannitol, BHT, and ascorbic acid could not protect them effectively. These results suggest that NHDC is a potent antioxidant, especially it is evaluated as a novel HOCl scavenger. This study implies the possibility of therapeutic effect of NHDC on ROS-related inflammatory diseases.  (+info)

Functional interactions of DNA topoisomerases with a human replication origin. (8/297)

The human DNA replication origin, located in the lamin B2 gene, interacts with the DNA topoisomerases I and II in a cell cycle-modulated manner. The topoisomerases interact in vivo and in vitro with precise bonds ahead of the start sites of bidirectional replication, within the pre-replicative complex region; topoisomerase I is bound in M, early G1 and G1/S border and topoisomerase II in M and the middle of G1. The Orc2 protein competes for the same sites of the origin bound by either topoisomerase in different moments of the cell cycle; furthermore, it interacts on the DNA with topoisomerase II during the assembly of the pre-replicative complex and with DNA-bound topoisomerase I at the G1/S border. Inhibition of topoisomerase I activity abolishes origin firing. Thus, the two topoisomerases are closely associated with the replicative complexes, and DNA topology plays an essential functional role in origin activation.  (+info)