(1/66602) An investigation into the binding of the carcinogen 15,16-dihydro-11-methylcyclopenta[a]phenanthren-17-one to DNA in vitro.

After metabolic activation the carcinogen 15,16-dihydro-11-[3H]methylcyclopenta[a]phenanthren-17-one binds to DNA in vitro, and this binding is prevented by 7,8-benzoflavone. Radioactivity cannot be removed from the DNA with organic solvents or by chromatography on Sephadex G-50, even after heat denaturation of the DNA. Enzymatic hydrolysis yields radioactive fractions, which elute from a column of Sephadex LH-20 immediately after the natural nucleosides. At least two species of reactive metabolites are involved in this bending, those with a half-life of a few hr and others with greater stability. After extraction from the aqueous incubation mixture, they could be detected in discrete polar fractions from separations of the complex metabolite mixture by high-pressure liquid chromatography. Their ability to bind to DNA decreased with time at ambient temperature, and they were rapidly deactivated by acid. 7,8-Benzolflavone acted by suppressing the formation of polar metabolites derived from enzymatic oxidation of the aromatic double bonds. The inhibitor had no effect on the enzymes hydroxylating saturated carbon; hence it is unlikely that metabolism of the methyl group is important in conversion of this carcinogen to its proximate form, although the presence of the 11-methyl group is essential for carcinogenic activity in this series.  (+info)

(2/66602) Action of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver.

The effects of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver were investigated. The enzyme was isolated from the nuclear fraction essentially according to the method of Baril et al.; it was characterized as the alpha polymerase on the basis of its response to synthetic templates and its inhibition with N-ethylmaleimide. Although polycytidylic acid had no effect on the DNA polymerase alpha either as a template or as an inhibitor, partially thiolated polycytidylic acid (MPC) was found to be a potent inhibitor, its activity being directly related to its extent of thiolation (percentage of 5-mercaptocytidylate units in the polymer). In comparison, the DNA polymerase beta which was purified from normal rat liver nuclear fraction, was much less sensitive to inhibition by MPC. Analysis of the inhibition of the alpha polymerase by the method of Lineweaver and Burk showed that the inhibitory action of MPC was competitively reversible with the DNA template, but the binding of the 7.2%-thiolated MPC to the enzyme was much stronger than that of the template (Ki/Km less than 0.03). Polyuridylic acid as such showed some inhibitory activity which increased on partial thiolation, but the 8.4%-thiolated polyuridylic acid was less active than the 7.2% MPC. When MPC was annealed with polyinosinic acid, it lost 80% of its inhibitory activity in the double-stranded configuration. However, 1 to 2%-thiolated DNA isolates were significantly more potent inhibitors than were comparable (1.2%-thiolated) MPC and showed competitive reversibility with the unmodified (but "activated") DNA template. These results indicate that the inhibitory activities of partially thiolated polynucleotides depend not only on the percentage of 5-mercapto groups but also on the configuration, base composition, and other specific structural properties.  (+info)

(3/66602) Blood thymidine level and iododeoxyuridine incorporation and reutilization in DNA in mice given long-acting thymidine pellets.

A long-acting thymidine pellet consisting of 190 mg of cholesterol and 60 mg of thymidine has been developed for the study of thymidine metabolism and reutilization in vivo. Implantation of such a pellet s.c. in adult mice will maintain the blood plasma concentration of thymidine at levels between 40 and 8 X 10(-6) M, which are from 36 to 7 times those of normal mice, for periods up to 48 hr. During this period, in vivo uptake and reutilization of [125I]iododeoxyuridine, a thymidine analog, into intestinal and tumor DNA were almost completely suppressed. While iododeoxyuridine reutilization is not large in normal proliferative tissue even in the absence of pellet implants, reutilization of over 30% was measured in large, rapidly growing ascites tumors. The inhibition of iododeoxyuridine incorporation by elevated thymidine blood levels is directly proportional to serum concentration. This appears to be due to a thymidine pool in rapid equilibrium with blood thymidine. This pool is at least 10 times larger than the 4-nmole pool of extracellular thymidine.  (+info)

(4/66602) Effect of hepatocarcinogens on the binding of glucocorticoid-receptor complex in rat liver nuclei.

The effects of a number of carcinogens and hepatotoxins on the binding kinetics of the interactions of glucocorticoidcytosol receptor complex with nuclear acceptor sites in rat liver were investigated. Both the apparent sites in rat liver were investigated. Both the apparent concentration of nuclear binding sites and the Kd were significantly diminished following treatment of rats with sublethal doses of the carcinogens aflatoxin B1, diethylnitrosamine, dimethylnitrosamine, thioacetamide, 3'-methyl-4-dimethylaminoazobenzene, 4-dimethylaminoazobenzene, and 3-methylcholanthrene. Treatment with actinomycin D resulted in a slight reduction in the apparent concentration of nuclear acceptor sites but had no effect on the nuclear binding Kd. The hepatotoxic but noncarcinogenic analgesic, acetaminophen, as well as the weakly toxic aflatoxin B1 cognate, aflatoxin B2, were without effect on the kinetics or binding capacity of glucocorticoid-nuclear acceptor site interaction. These experiments suggest that chemically induced alteration of functional glucocorticoid binding sites on chromatin may be involved in the biochemical effects produced in liver by carcinogens of several chemical types. This experimental model may provide a useful approach for further elucidation of early events in carcinogenesis.  (+info)

(5/66602) Effect of sex difference on the in vitro and in vivo metabolism of aflatoxin B1 by the rat.

Hepatic microsome-catalyzed metabolism of aflatoxin B1 (AFB1) to aflatoxin M1 and aflatoxin Q1 and the "metabolic activation" of AFB1 to DNA-alylating metabolite(s) were studied in normal male and female Sprague-Dawley rats, in gonadectomized animals, and in castrated males and normal females treated with testosterone. Microsomes from male animals formed 2 to 5 times more aflatoxin M1, aflatoxin Q1, and DNA-alkylating metabolite(s) than those from females. Castration reduced the metabolism of AFB1 by the microsomes from males by about 50%, whereas ovariectomy had no significant effect on AFB1 metabolism by the microsomes from females. Testosterone treatment (4 mg/rat, 3 times/week for about 6 weeks) of castrated immature males and immature females enhanced the metabolism of AFB1 by their microsomes. A sex difference in the metabolism of AFB1 by liver microsomes was also seen in other strains of rats tested: Wistar, Long-Evans, and Fischer. The activity of kidney microsomes for metabolic activation was 1 to 4% that of the liver activity and was generally lower in microsomes from male rats as compared to those from female rats of Sprague-Dawley, Wistar, and Long-Evans strains. The in vitro results obtained with hepatic microsomes correlated well with the in vivo metabolism of AFB1, in that more AFB1 became bound in vivo to hepatic DNA isolated from male rats and from a female rat treated with testosterone than that isolated from control female rats. These data suggest that the differences in hepatic AFB1 metabolism may be the underlying cause of the sex difference in toxicity and carcinogenicity of AFB1 observed in rats.  (+info)

(6/66602) Lymphocyte proliferation inhibitory factor (PIF) in alcoholic liver disease.

Lymphocyte proliferation inhibitory factor (PIF) was determined in the supernatants of PHA-stimulated lymphocytes from patients with alcoholic liver disease. PIF was assayed by determining inhibition of DNA synthesis in WI-38 human lung fibroblasts. A two-fold greater inhibition in thymidine incorporation into DNA by lung fibroblasts was observed in supernatants of PHA stimulated lymphocytes from patients with alcoholic hepatitis or active Laennec's cirrhosis as compared with that found in control subjects or patients with fatty liver. It is suggested that decreased liver cell regeneration seen in some patients with alcoholic hepatitis may be due to increased elaboration of PIF.  (+info)

(7/66602) Features of the immune response to DNA in mice. I. Genetic control.

The genetic control of the immune response to DNA was studied in various strains of mice F1 hybrids and corresponding back-crosses immunized with single stranded DNA complexed to methylated bovine serum albumin. Anti-DNA antibody response was measured by radioimmuno-logical technique. High responder, low responder, and intermediate responder strains were found and the ability to respond to DNA was characterized as a dominant genetic trait which is not linked to the major locus of histocompatibility. Studies in back-crosses suggested that this immune response is under multigenic control. High responder mice produce both anti-double stranded DNA and anti-single stranded DNA 7S and 19S antibodies, while low responder mice produce mainly anti-single stranded DNA 19S antibodies.  (+info)

(8/66602) Mechanisms of GDF-5 action during skeletal development.

Mutations in GDF-5, a member of the TGF-beta superfamily, result in the autosomal recessive syndromes brachypod (bp) in mice and Hunter-Thompson and Grebe-type chondrodysplasias in humans. These syndromes are all characterised by the shortening of the appendicular skeleton and loss or abnormal development of some joints. To investigate how GDF-5 controls skeletogenesis, we overexpressed GDF-5 during chick limb development using the retrovirus, RCASBP. This resulted in up to a 37.5% increase in length of the skeletal elements, which was predominantly due to an increase in the number of chondrocytes. By injecting virus at different stages of development, we show that GDF-5 can increase both the size of the early cartilage condensation and the later developing skeletal element. Using in vitro micromass cultures as a model system to study the early steps of chondrogenesis, we show that GDF-5 increases chondrogenesis in a dose-dependent manner. We did not detect changes in proliferation. However, cell suspension cultures showed that GDF-5 might act at these stages by increasing cell adhesion, a critical determinant of early chondrogenesis. In contrast, pulse labelling experiments of GDF-5-infected limbs showed that at later stages of skeletal development GDF-5 can increase proliferation of chondrocytes. Thus, here we show two mechanisms of how GDF-5 may control different stages of skeletogenesis. Finally, our data show that levels of GDF-5 expression/activity are important in controlling the size of skeletal elements and provides a possible explanation for the variation in the severity of skeletal defects resulting from mutations in GDF-5.  (+info)