Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). (1/188)

Cyr61 and connective tissue growth factor (CTGF), members of a newly identified family of extracellular matrix-associated signaling molecules, are found to mediate cell adhesion, promote cell migration and enhance growth factor-induced cell proliferation in vitro, and induce angiogenesis in vivo. We previously showed that vascular endothelial cell adhesion and migration to Cyr61 and Fisp12 (mouse CTGF) are mediated through integrin alpha(v)beta(3). Both Cyr61 and Fisp12/mCTGF are present in normal blood vessel walls, and it has been demonstrated that CTGF is overexpressed in advanced atherosclerotic lesions. In the present study, we examined whether Cyr61 and Fisp12/mCTGF could serve as substrates for platelet adhesion. Agonist (ADP, thrombin, or U46619)-stimulated but not resting platelets adhered to both Cyr61 and Fisp12/mCTGF, and this process was completely inhibited by prostaglandin I(2), which prevents platelet activation. The specificity of Cyr61- and Fisp12/mCTGF-mediated platelet adhesion was demonstrated by specific inhibition of this process with polyclonal anti-Cyr61 and anti-Fisp12/mCTGF antibodies, respectively. The adhesion of ADP-activated platelets to both proteins was divalent cation-dependent and was blocked by RGDS, HHLGGAKQAGDV, or echistatin, but not by RGES. Furthermore, this process was specifically inhibited by the monoclonal antibody AP-2 (anti-alpha(IIb)beta(3)), but not by LM609 (anti-alpha(v)beta(3)), indicating that the interaction is mediated through integrin alpha(IIb)beta(3). In a solid phase binding assay, activated alpha(IIb)beta(3), purified by RGD affinity chromatography, bound to immobilized Cyr61 and Fisp12/mCTGF in a dose-dependent and RGD-inhibitable manner. In contrast, unactivated alpha(IIb)beta(3) failed to bind to either protein. Collectively, these findings identify Cyr61 and Fisp12/mCTGF as two novel activation-dependent adhesive ligands for the integrin alpha(IIb)beta(3) on human platelets, and implicate a functional role for these proteins in hemostasis and thrombosis.  (+info)

Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. (2/188)

Although most eukaryotic mRNAs need a functional cap binding complex eIF4F for efficient 5' end- dependent scanning to initiate translation, picornaviral, hepatitis C viral, and a few cellular RNAs have been shown to be translated by internal ribosome entry, a mechanism that can operate in the presence of low levels of functional eIF4F. To identify cellular mRNAs that can be translated when eIF4F is depleted or in low abundance and that, therefore, may contain internal ribosome entry sites, mRNAs that remained associated with polysomes were isolated from human cells after infection with poliovirus and were identified by using a cDNA microarray. Approximately 200 of the 7000 mRNAs analyzed remained associated with polysomes under these conditions. Among the gene products encoded by these polysome-associated mRNAs were immediate-early transcription factors, kinases, and phosphatases of the mitogen-activated protein kinase pathways and several protooncogenes, including c-myc and Pim-1. In addition, the mRNA encoding Cyr61, a secreted factor that can promote angiogenesis and tumor growth, was selectively mobilized into polysomes when eIF4F concentrations were reduced, although its overall abundance changed only slightly. Subsequent tests confirmed the presence of internal ribosome entry sites in the 5' noncoding regions of both Cyr61 and Pim-1 mRNAs. Overall, this study suggests that diverse mRNAs whose gene products have been implicated in a variety of stress responses, including inflammation, angiogenesis, and the response to serum, can use translational initiation mechanisms that require little or no intact cap binding protein complex eIF4F.  (+info)

Factor VIIa and thrombin induce the expression of Cyr61 and connective tissue growth factor, extracellular matrix signaling proteins that could act as possible downstream mediators in factor VIIa x tissue factor-induced signal transduction. (3/188)

Extracellular interactions of plasma clotting factor VIIa (FVIIa) with tissue factor (TF) on cell surfaces trigger the intracellular signaling events. At present, it is unclear how these signals influence phenotype. To elucidate this, we have used cDNA microarray technology to examine changes in transcriptional program in human fibroblasts in response to exposure to FVIIa. cDNA microarrays revealed that FVIIa binding to TF up-regulated the expression of Cyr61 and CTGF (connective tissue growth factor), the genes that encode extracellular matrix signaling proteins Cyr61 and CTGF, respectively. Northern blot analysis confirmed that FVIIa binding to TF markedly increased the expression of Cyr61 and CTGF in a time- and dose-dependent manner. FVIIa catalytic activity is required for the gene induction. In addition to FVIIa, thrombin also induced the expression of Cyr61 and CTGF. Hirudin abolished the thrombin-induced expression of these mRNAs but not the FVIIa-induced expression. FVIIa-induced expression of Cyr61 appears not to involve the currently known protease-activated receptors (PARs), whereas thrombin-induced expression involves the activation of PAR1 and possibly an additional PAR. Various intracellular signaling pathway inhibitors exhibited different inhibitory pattern on FVIIa and thrombin-induced up-regulation of Cyr61. Cyr61 and CTGF could act as downstream mediators of FVIIa x TF in affecting various biological processes.  (+info)

Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. (4/188)

The angiogenic inducer Cyr61 is an extracellular matrix-associated heparin-binding protein that can mediate cell adhesion, stimulate cell migration, and enhance growth factor-stimulated DNA synthesis in both fibroblasts and endothelial cells in culture. In vivo, Cyr61 induces neovascularization and promotes tumor growth. Cyr61 is a prototypic member of a highly conserved family of secreted proteins that includes connective tissue growth factor, nephroblastoma overexpressed, Elm-1/WISP-1, Cop-1/WISP-2, and WISP-3. Encoded by an immediate early gene, Cyr61 synthesis is induced by serum growth factors in cultured fibroblasts and in dermal fibroblasts during cutaneous wound healing. We previously demonstrated that Cyr61 mediates adhesion of vascular endothelial cells and activation-dependent adhesion of blood platelets through direct interaction with integrins alpha(V)beta(3) and alpha(IIb)beta(3), respectively. In this study, we show that the adhesion of primary human skin fibroblasts to Cyr61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans (HSPGs), which most likely serve as co-receptors. Either destruction of cell surface HSPGs or prior occupancy of the Cyr61 heparin-binding site completely blocked cell adhesion to Cyr61. A heparin-binding defective mutant of Cyr61 was unable to mediate fibroblast adhesion through integrin alpha(6)beta(1) but still mediated endothelial cell adhesion through integrin alpha(V)beta(3), indicating that endothelial cell adhesion through integrin alpha(V)beta(3) is independent of the heparin-binding activity of Cyr61. These results identify Cyr61 as a novel adhesive substrate for integrin alpha(6)beta(1) and provide the first demonstration of the requirement for HSPGs in integrin-mediated cell attachment. In addition, these findings suggest that Cyr61 might elicit disparate biological effects in different cell types through interaction with distinct integrin receptors.  (+info)

Muscarinic acetylcholine receptors induce the expression of the immediate early growth regulatory gene CYR61. (5/188)

In brain, muscarinic acetylcholine receptors (mAChRs) modulate neuronal functions including long term potentiation and synaptic plasticity in neuronal circuits that are involved in learning and memory formation. To identify mAChR-inducible genes, we used a differential display approach and found that mAChRs rapidly induced transcription of the immediate early gene CYR61 in HEK 293 cells with a maximum expression after 1 h of receptor stimulation. CYR61 is a member of the emerging CCN gene family that includes CYR61/CEF10, CTGF/FISP-12, and NOV; these encode secretory growth regulatory proteins with distinct functions in cell proliferation, migration, adhesion, and survival. We found that CYR61, CTGF, and NOV were expressed throughout the human central nervous system. Stimulation of mAChRs induced CYR61 expression in primary neurons and rat brain where CYR61 mRNA was detected in cortical layers V and VI and in thalamic nuclei. In contrast, CTGF and NOV expression was not altered by mAChRs neither in neuronal tissue culture nor rat brain. Receptor subtype analyses demonstrated that m1 and m3 mAChR subtypes strongly induced CYR61 expression, whereas m2 and m4 mAChRs had only subtle effects. Increased CYR61 expression was coupled to mAChRs by both protein kinase C and elevations of intracellular Ca(2+). Our results establish that CYR61 expression in mammalian brain is under the control of cholinergic neurotransmission; it may thus be involved in cholinergic regulation of synaptic plasticity.  (+info)

Expression and function of CYR61, an angiogenic factor, in breast cancer cell lines and tumor biopsies. (6/188)

We have previously shown that expression of heregulin (HRG) is closely correlated with breast cancer progression. We have subsequently isolated Cyr61, a ligand for the alpha(v)beta3 integrin that is differentially expressed in HRG-positive cells, and have shown that it is expressed in all of the invasive and metastatic breast cancer cell lines tested. Preliminary evaluation of Cyr61 expression in breast tumor biopsies revealed expression of Cyr61 in about 30% of invasive breast carcinomas. Significantly, we demonstrated that Cyr61 is a downstream effector of HRG action, because a Cyr61-neutralizing antibody abolished the ability of HRG-expressing cells to migrate in vitro. Furthermore, we have shown that HRG-expressing cells denote higher levels of alpha(v)beta3 expression, and we have established that Cyr61 action is mediated, at least in part, through its receptor alpha(v)beta3, because a functional blocking antibody of the alpha(v)beta3 blocked the Matrigel outgrowth of HRG-expressing cells. These results strongly suggest that Cyr61 is necessary for HRG-mediated chemomigration and that Cyr61 plays a functional role in breast cancer progression, possibly through its interactions with the alpha(v)beta3 receptor.  (+info)

The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. (7/188)

The angiogenic inducers cysteine-rich angiogenic protein 61 (Cyr61) and connective tissue growth factor (CTGF) are structurally related, extracellular matrix-associated heparin-binding proteins. Both can stimulate chemotaxis and promote proliferation in endothelial cells and fibroblasts in culture and induce neovascularization in vivo. Encoded by inducible immediate early genes, Cyr61 and CTGF are synthesized upon growth factor stimulation in cultured fibroblasts and during cutaneous wound healing in dermal fibroblasts. Recently, we have shown that adhesion of primary human fibroblasts to immobilized Cyr61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans (HSPGs) (Chen, N., Chen, C.-C., and Lau, L.F. (2000) J. Biol. Chem. 275, 24953-24961), providing the first demonstration of an absolute requirement for HSPGs in integrin-mediated cell attachment. We show in this study that CTGF also mediates fibroblast adhesion through the same mechanism and demonstrate that fibroblasts adhesion to immobilized Cyr61 or CTGF induces distinct adhesive signaling responses consistent with their biological activities. Compared with fibroblast adhesion to fibronectin, laminin, or type I collagen, cell adhesion to Cyr61 or CTGF induces 1) more extensive and prolonged formation of filopodia and lamellipodia, concomitant with formation of integrin alpha(6)beta(1)-containing focal complexes localized at leading edges of pseudopods; 2) activation of intracellular signaling molecules including focal adhesion kinase, paxillin, and Rac with similar rapid kinetics; 3) sustained activation of p42/p44 MAPKs lasting for at least 9 h; and 4) prolonged gene expression changes including up-regulation of MMP-1 (collagenase-1) and MMP-3 (stromelysin-1) mRNAs and proteins sustained for at least 24 h. Together, these results establish Cyr61 and CTGF as bona fide adhesive substrates with specific signaling capabilities, provide a molecular basis for their activities in fibroblasts through integrin alpha(6)beta(1) and HSPG-mediated signaling during attachment and indicate that these proteins may function in matrix remodeling through the activation of metalloproteinases during angiogenesis and wound healing.  (+info)

CYR61 stimulates human skin fibroblast migration through Integrin alpha vbeta 5 and enhances mitogenesis through integrin alpha vbeta 3, independent of its carboxyl-terminal domain. (8/188)

CYR61, an angiogenic factor and a member of the CCN protein family, is an extracellular matrix-associated, heparin-binding protein that mediates cell adhesion, promotes cell migration, and enhances growth factor-stimulated cell proliferation. CYR61 induces angiogenesis and promotes tumor growth in vivo and is expressed in dermal fibroblasts during cutaneous wound healing. It has been demonstrated recently that adhesion of primary skin fibroblasts to CYR61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans, resulting in adhesive signaling and up-regulation of matrix metalloproteinases 1 and 3. CYR61 is composed of four discrete structural domains that bear sequence similarities to the insulin-like growth factor-binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a carboxyl-terminal (CT) domain that resembles cysteine knots found in some growth factors. In this study, we show that a CYR61 mutant (CYR61DeltaCT) that has the CT domain deleted is unable to support adhesion of primary human skin fibroblasts but is still able to stimulate chemotaxis and enhance basic fibroblast growth factor-induced mitogenesis similar to wild type. In addition, fibroblast migration to CYR61 is mediated through integrin alpha(v)beta(5) but not integrins alpha(6)beta(1) or alpha(v)beta(3). Furthermore, we show that CYR61 binds directly to purified integrin alpha(v)beta(5) in vitro. By contrast, CYR61 enhancement of basic fibroblast growth factor-induced DNA synthesis is mediated through integrin alpha(v)beta(3), a known receptor for CYR61 that mediates CYR61-dependent cell adhesion and chemotaxis in vascular endothelial cells. Thus, CYR61 promotes primary human fibroblast adhesion, migration, and mitogenesis through integrins alpha(6)beta(1), alpha(v)beta(5), and alpha(v)beta(3), respectively. Together, these findings establish CYR61 as a novel ligand for integrin alpha(v)beta(5) and show that CYR61 interacts with distinct integrins to mediate disparate activities in a cell type-specific manner.  (+info)