(1/18083) The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579.

The extracellular receptor stimulated kinase ERK2 (p42(MAPK))-phosphorylated human cAMP-specific phosphodiesterase PDE4D3 at Ser579 and profoundly reduced ( approximately 75%) its activity. These effects could be reversed by the action of protein phosphatase PP1. The inhibitory state of PDE4D3, engendered by ERK2 phosphorylation, was mimicked by the Ser579-->Asp mutant form of PDE4D3. In COS1 cells transfected to express PDE4D3, challenge with epidermal growth factor (EGF) caused the phosphorylation and inhibition of PDE4D3. This effect was blocked by the MEK inhibitor PD98059 and was not apparent using the Ser579-->Ala mutant form of PDE4D3. Challenge of HEK293 and F442A cells with EGF led to the PD98059-ablatable inhibition of endogenous PDE4D3 and PDE4D5 activities. EGF challenge of COS1 cells transfected to express PDE4D3 increased cAMP levels through a process ablated by PD98059. The activity of the Ser579-->Asp mutant form of PDE4D3 was increased by PKA phosphorylation. The transient form of the EGF-induced inhibition of PDE4D3 is thus suggested to be due to feedback regulation by PKA causing the ablation of the ERK2-induced inhibition of PDE4D3. We identify a novel means of cross-talk between the cAMP and ERK signalling pathways whereby cell stimuli that lead to ERK2 activation may modulate cAMP signalling.  (+info)

(2/18083) The paired-domain transcription factor Pax8 binds to the upstream enhancer of the rat sodium/iodide symporter gene and participates in both thyroid-specific and cyclic-AMP-dependent transcription.

The gene encoding the Na/I symporter (NIS) is expressed at high levels only in thyroid follicular cells, where its expression is regulated by the thyroid-stimulating hormone via the second messenger, cyclic AMP (cAMP). In this study, we demonstrate the presence of an enhancer that is located between nucleotides -2264 and -2495 in the 5'-flanking region of the NIS gene and that recapitulates the most relevant aspects of NIS regulation. When fused to either its own or a heterologous promoter, the NIS upstream enhancer, which we call NUE, stimulates transcription in a thyroid-specific and cAMP-dependent manner. The activity of NUE depends on the four most relevant sites, identified by mutational analysis. The thyroid-specific transcription factor Pax8 binds at two of these sites. Mutations that interfere with Pax8 binding also decrease transcriptional activity of the NUE. Furthermore, expression of Pax8 in nonthyroid cells results in transcriptional activation of NUE, strongly suggesting that the paired-domain protein Pax8 plays an important role in NUE activity. The NUE responds to cAMP in both protein kinase A-dependent and -independent manners, indicating that this enhancer could represent a novel type of cAMP responsive element. Such a cAMP response requires Pax8 but also depends on the integrity of a cAMP responsive element (CRE)-like sequence, thus suggesting a functional interaction between Pax8 and factors binding at the CRE-like site.  (+info)

(3/18083) Identification of a cAMP response element within the glucose- 6-phosphatase hydrolytic subunit gene promoter which is involved in the transcriptional regulation by cAMP and glucocorticoids in H4IIE hepatoma cells.

The expression of a luciferase reporter gene under the control of the human glucose 6-phosphatase gene promoter was stimulated by both dexamethasone and dibutyryl cAMP in H4IIE hepatoma cells. A cis-active element located between nucleotides -161 and -152 in the glucose 6-phosphatase gene promoter was identified and found to be necessary for both basal reporter-gene expression and induction of expression by both dibutyryl cAMP and dexamethasone. Nucleotides -161 to -152 were functionally replaced by the consensus sequence for a cAMP response element. An antibody against the cAMP response element-binding protein caused a supershift in gel-electrophoretic-mobility-shift assays using an oligonucleotide probe representing the glucose 6-phosphatase gene promoter from nucleotides -161 to -152. These results strongly indicate that in H4IIE cells the glucose 6-phosphatase gene-promoter sequence from -161 to -152 is a cAMP response element which is important for the regulation of transcription of the glucose 6-phosphatase gene by both cAMP and glucocorticoids.  (+info)

(4/18083) PrKX is a novel catalytic subunit of the cAMP-dependent protein kinase regulated by the regulatory subunit type I.

The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.  (+info)

(5/18083) A2B adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. cross-talk between cyclic AMP and protein kinase c pathways.

Mitogen-activated protein kinase (MAPK) cascades underlie long-term mitogenic, morphogenic, and secretory activities of purinergic receptors. In HEK-293 cells, N-ethylcarboxamidoadenosine (NECA) activates endogenous A2BARs that signal through Gs and Gq/11. UTP activates P2Y2 receptors and signals only through Gq/11. The MAPK isoforms, extracellular-signal regulated kinase 1/2 (ERK), are activated by NECA and UTP. H-89 blocks ERK activation by forskolin, but weakly affects the response to NECA or UTP. ERK activation by NECA or UTP is unaffected by a tyrosine kinase inhibitor (genistein), attenuated by a phospholipase C inhibitor (U73122), and is abolished by a MEK inhibitor (PD098059) or dominant negative Ras. Inhibition of protein kinase C (PKC) by GF 109203X failed to block ERK activation by NECA or UTP, however, another PKC inhibitor, Ro 31-8220, which unlike GF 109203X, can block the zeta-isoform, and prevents UTP- but not NECA-induced ERK activation. In the presence of forskolin, Ro 31-8220 loses its ability to block UTP-stimulated ERK activation. PKA has opposing effects on B-Raf and c-Raf-1, both of which are found in HEK-293 cells. The data are explained by a model in which ERK activity is modulated by differential effects of PKC zeta and PKA on Raf isoforms.  (+info)

(6/18083) CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period.

Neuronal activity-dependent processes are believed to mediate the formation of synaptic connections during neocortical development, but the underlying intracellular mechanisms are not known. In the visual system, altering the pattern of visually driven neuronal activity by monocular deprivation induces cortical synaptic rearrangement during a postnatal developmental window, the critical period. Here, using transgenic mice carrying a CRE-lacZ reporter, we demonstrate that a calcium- and cAMP-regulated signaling pathway is activated following monocular deprivation. We find that monocular deprivation leads to an induction of CRE-mediated lacZ expression in the visual cortex preceding the onset of physiologic plasticity, and this induction is dramatically downregulated following the end of the critical period. These results suggest that CRE-dependent coordinate regulation of a network of genes may control physiologic plasticity during postnatal neocortical development.  (+info)

(7/18083) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism.

MAG is a potent inhibitor of axonal regeneration. Here, inhibition by MAG, and myelin in general, is blocked if neurons are exposed to neurotrophins before encountering the inhibitor; priming cerebellar neurons with BDNF or GDNF, but not NGF, or priming DRG neurons with any of these neurotrophins blocks inhibition by MAG/myelin. Dibutyryl cAMP also overcomes inhibition by MAG/myelin, and cAMP is elevated by neurotrophins. A PKA inhibitor present during priming abrogates the block of inhibition. Finally, if neurons are exposed to MAG/myelin and neurotrophins simultaneously, but with the Gi protein inhibitor, inhibition is blocked. We suggest that priming neurons with particular neurotrophins elevates cAMP and activates PKA, which blocks subsequent inhibition of regeneration and that priming is required because MAG/myelin activates a Gi protein, which blocks increases in cAMP. This is important for encouraging axons to regrow in vivo.  (+info)

(8/18083) Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia.

The formation of a persistently active cAMP-dependent protein kinase (PKA) is critical for establishing long-term synaptic facilitation (LTF) in Aplysia. The injection of bovine catalytic (C) subunits into sensory neurons is sufficient to produce protein synthesis-dependent LTF. Early in the LTF induced by serotonin (5-HT), an autonomous PKA is generated through the ubiquitin-proteasome-mediated proteolysis of regulatory (R) subunits. The degradation of R occurs during an early time window and appears to be a key function of proteasomes in LTF. Lactacystin, a specific proteasome inhibitor, blocks the facilitation induced by 5-HT, and this block is rescued by injecting C subunits. R is degraded through an allosteric mechanism requiring an elevation of cAMP coincident with the induction of a ubiquitin carboxy-terminal hydrolase.  (+info)