A reverse transcriptase-polymerase chain reaction assay for the diagnosis of turkey coronavirus infection. (1/6)

This study reports on the development of a reverse transcriptase-polymerase chain reaction (RT-PCR) for the specific detection of turkey coronavirus (TCoV). Of the several sets of primers tested, 1 set of primers derived from the P gene and 2 sets derived from the N gene of TCoV could amplify the TCoV genome in the infected samples. The RT-PCR was sensitive and specific for TCoV and did not amplify other avian RNA and DNA viruses tested except the infectious bronchitis virus (IBV). To overcome the problem of IBV amplification, a set of separate primers was designed from the spike protein gene of IBV. The RT-PCR under the same conditions as above could effectively differentiate between TCoV and IBV. The closely related bovine coronavirus and transmissible gastroenteritis virus of pigs were differentiated from TCoV using the same RT-PCR with slight modifications. The results of RT-PCR correlated well with the results of the immunofluorescent test for the same samples tested at the Purdue University Animal Disease Laboratory, West Lafayette, Indiana. The nucleotide sequence and projected amino acid sequence comparison of the P gene of different isolates of TCoV from 5 different states in the United States revealed a close association among the different isolates of TCoV.  (+info)

Seroprevalence of turkey coronavirus in North American turkeys determined by a newly developed enzyme-linked immunosorbent assay based on recombinant antigen. (2/6)

 (+info)

Emergence of a group 3 coronavirus through recombination. (3/6)

 (+info)

Antigenic and genomic relationships among turkey and bovine enteric coronaviruses. (4/6)

Antigenic and genomic relationships among tissue culture-adapted turkey enteric coronavirus (TCV) isolates, three strains of avian infectious bronchitis virus (IBV), and mammalian coronaviruses were investigated. Immunoblotting and immunoprecipitation experiments using polyclonal antisera showed that the four major structural proteins of TCV cross-reacted with the four homologous proteins of bovine enteric coronavirus (BCV), the N and M proteins of mouse hepatitis virus serotype 3, and the N protein of IBV. Close antigenic relationships between TCV and BCV were also established by seroneutralization and hemagglutination-inhibition. Of 49 monoclonal antibodies produced against either TCV or BCV, 11 differentiated the two viruses. Five of these monoclonal antibodies had neutralizing activities and were directed to either the peplomeric S (gp200-gp100) or hemagglutinin HE (gp140-gp65) glycoproteins. BCV cDNA probes tested on purified viral preparations and coronavirus-positive (by electron microscopy) fecal samples from diarrheic turkey poults confirmed the relatedness of TCV and BCV. The two viruses produced distinct cytopathic changes in HRT-18 cells in the presence of trypsin, whereas only TCV isolates were able to reproduce the clinical symptoms in turkey poults. Their matrix (M) proteins undergo different glycosylation processes.  (+info)

Characterization of group II avian adenoviruses with a panel of monoclonal antibodies. (5/6)

The interaction between a panel of ten monoclonal antibodies and hemorrhagic enteritis virus, a group II avian adenovirus, was determined. The monoclonal antibodies reacted with all nine isolates of group II avian adenoviruses, but not with any of five types of group I avian adenoviruses. All ten monoclonal antibodies recognized antigenic determinants on the hexon protein of hemorrhagic enteritis virus when analyzed by immunoprecipitation and immunoblotting. They reacted only with the native hexon protein and not with protein denatured by sodium dodecyl sulfate or guanidine-HCl/urea treatment combined with reduction and carboxymethylation. Based on the results of competitive binding assays, the panel of monoclonal antibodies could be subdivided into two groups, which recognized different antigenic domains of the hemorrhagic enteritis virus hexon protein. The monoclonal antibodies in group 1 neutralized hemorrhagic enteritis virus infectivity while the monoclonal antibodies of group 2 did not. Group 1 consisted of eight monoclonal antibodies which could be further subdivided into subgroups 1A, 1B, 1C and 1D. The subdivision of the monoclonal antibodies was based on the degree of blocking in the competitive binding assays and differences in their ability to induce enhancement. In general, the monoclonal antibodies had a higher avidity for the virulent isolate of hemorrhagic enteritis virus than for the avirulent hemorrhagic enteritis virus isolate.  (+info)

Antigenic and polypeptide structure of turkey enteric coronaviruses as defined by monoclonal antibodies. (6/6)

Twenty-nine hybridoma cells lines, producing monoclonal antibodies (MAbs) to the Minnesota strain of turkey enteric coronavirus (TCV), have been established by fusion of Sp2/0 myeloma cells with spleen cells from BALB/c mice immunized with purified preparations of the egg-adapted or tissue culture-adapted virus. The hybridomas produced mainly IgG2a or IgG1 antibodies. Western immunoblotting experiments with purified virus, and immunoprecipitation tests with [35S]methionine-labelled infected cell extracts, allowed assessment of the polypeptide specificity of the MAbs. Sixteen hybridomas secreted antibodies directed to the peplomeric protein (E2, gp200/gp100) and putative intracellular precursors of apparent Mr 170K to 180K and 90K. Four hybridomas produced antibodies that selectively reacted with a glycoprotein with an Mr of 140K (E3). This polypeptide species corresponded to the major structural component of small granular projections, located near the base of the larger bulbous peplomers, and was found to be responsible for haemagglutination. The major neutralization-mediating determinants were found to be carried by both E2 and E3 glycoproteins. Eight hybridomas produced MAbs directed to the major nucleocapsid protein (N, 52K), and only one MAb reacted with a low Mr structural glycoprotein (24K), corresponding to the matrix (E1) protein. By indirect immunofluorescence, MAbs of different specificity also revealed distinct patterns of distribution of the viral antigens within the cells. The location on the virion of the antigenic determinants recognized by MAbs of different specificity was determined by the use of an immunogold electron microscopy technique. Comparison of nine TCV Quebec strains, using MAbs directed to peplomer and haemagglutinin proteins of the prototype Minnesota strain, confirmed their close antigenic relationship, but also revealed the occurrence of at least two distinct antigenic groups.  (+info)