Insulin regulation of amino acid transport in mesenchymal cells from avian and mammalian tissues. (1/275)

Insulin regulation of amino acid transport across the cell membrane was studied in a variety of mesenchymal cell directly isolated from avian and mammalian tissues or collected from confluent cultures. Transport activity of the principal systems of mediation in the presence and absence of insulin was evaluated by measuring the uptake of representative amino acids under conditions approaching initial entry rates. Insulin enhanced the transport rate of substrate amino acids from the A system(alpha-aminoisobutyric acid, L-proline, glycine, L-alanine and L-serine) in fibroblasts and osteoblasts from chick-embryo tissues, in mesenchymal cells (fibroblasts and smooth muscle cells) from immature rat uterus, in thymic lymphocytes from young rats and in chick-embryo fibroblasts from confluent secondary cultures. In these tissues, the uptake of amino acid substrates of transport systems L and Ly+ (L-leucine, L-phenylalanine, L-lysine) was not affected by the presence of the hormone. No insulin control of amino acid transport was detected in chick-embryo chondroblasts and rat peritoneal macrophages. These observations identify the occurrence of hormonal regulatory patterns of amino acid transport for different mesenchymal cells types and indicate that these properties emerge early during cell differentiation.  (+info)

Role of matrix metalloproteinases and their tissue inhibitors in the regulation of coronary cell migration. (2/275)

The migration of vascular cells is regulated by matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). Because the activation of adventitial fibroblasts has been implicated in coronary repair, we have examined regional differences in cell outgrowth and the synthesis of MMPs/TIMPs in different layers of porcine coronary arteries. Coronary medial explants demonstrated significantly slower cell outgrowth than coronary adventitia in culture (P<0.001). These observations were paralleled by the predominant expression of TIMP-1 and -2 in the media (14-fold and 37-fold higher than in adventitia, respectively, P<0.001), whereas higher gelatinolytic activities (MMP-2 and -9) were released from adventitial explants. Smooth muscle cell outgrowth from the media was regulated by endogenous TIMPs, since TIMP inhibition (recombinant MMP-2 or neutralizing anti-TIMP antibodies) facilitated cell outgrowth (P<0.001). In contrast, the addition of recombinant TIMP-1 or -2 decreased adventitial cell outgrowth. In the coculture experiments, the presence of coronary media retarded adventitial cell outgrowth, whereas medial damage abrogated these effects, allowing for fibroblast migration (P<0.001). In conclusion, this study demonstrated differential migratory properties and distinct MMP/TIMP synthesis by coronary fibroblasts and smooth muscle cells. Endogenous TIMPs in the media may play an important role in maintaining coronary arterial wall homeostasis, whereas high levels of matrix-degrading activities confer the "invasive" characteristics of adventitial fibroblasts.  (+info)

Selective antibody blockade of lymphocyte migration to mucosal sites and mast cell adhesion. (3/275)

The integrins alpha4beta7 and alpha4beta1 mediate adhesion to the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) and the vascular cell adhesion molecule-1 (VCAM-1) and are important in T cell and allergic inflammatory reactions in the rat. The relative contributions of alpha4beta7 and alpha4beta1 in these reactions is unknown. To examine the role of alpha4beta7 in the rat a new mAb, TA-6, was developed. TA-6 inhibited adhesion to MAdCAM-1 but not to VCAM-1, a characteristic of alpha4beta7 adhesion, and immunofluorescence and immunoprecipitation studies were compatible with binding to alpha4beta7. TA-6 blocked rat lymphocyte adhesion to mesenteric lymph nodes and T cell migration to mucosal lymphoid tissues and it bound to rat mucosal mast cells. TA-6 did not inhibit lymphocyte adhesion to peripheral lymph nodes and T cell migration to peripheral lymphoid tissues or cutaneous inflammatory sites, and was not expressed on connective tissue mast cells.  (+info)

Gi-mediated activation of mitogen-activated protein kinase (MAPK) pathway by receptor mimetic basic secretagogues of connective tissue-type mast cells: bifurcation of arachidonic acid-induced release upstream of MAPK. (4/275)

The family of basic secretagogues of connective tissue mast cells act as receptor mimetic agents, which trigger exocytosis by directly activating G proteins. We now demonstrate that pertussis toxin (Ptx)-sensitive Gi proteins, activated by compound 48/80 (c48/80), a potent member of this family, also activate the p42/p44 MAP kinases (MAPKs). This activation was potentiated by the protein tyrosine phosphatase inhibitor vanadate, whereas the tyrphostin AG-18, a competitive inhibitor of protein tyrosine kinases (PTKs); the protein kinase C inhibitors K252a and GF109203X; the phosphatidylinositol-3-kinase (PI-3K) inhibitors wortmannin and LY294002; and EGTA have abolished this activation. These results suggest that c48/80 activated the p42/p44 MAPKs via a mechanism that involves PTKs, protein kinase C, phosphatidylinositol-3-kinase and Ca2+ as mediators. Protein tyrosine phosphorylation and activation of the p42/p44 MAPKs were closely correlated with stimulation of arachidonic acid (AA) release by c48/80 but not with histamine secretion. However, whereas PD98059, the inhibitor of the MAPK kinase has abrogated MAPK activation, this inhibitor failed to effect release of AA. We therefore conclude that by activating Ptx-sensitive Gi protein(s), the basic secretagogues of mast cells stimulate multiple signaling pathways, which diverge to regulate the production and release of the different inflammatory mediators. Whereas the signaling pathway responsible for triggering histamine release is PTK independent, the pathway responsible for the stimulation of AA release bifurcates downstream to PTKs but upstream to the activation of MAPKs.  (+info)

Cyclic expression of mRNA transcripts for connective tissue components in the mouse ovary. (5/275)

In the ovary, differentiation of germinal cells into primordial follicles, functional ovulatory follicles and corpus luteum, all take place in a connective tissue matrix. We postulated that extracellular matrix (ECM) of the ovary participates actively in ovarian functions. To test this, the mRNA levels for several ECM components were determined in the mouse ovary at six distinct stages of the 4-day oestrous cycle. Northern analysis revealed statistically significant cyclic expression patterns for the mRNAs coding for type III, IV and VI collagens as well as for the small proteoglycan, biglycan, and for syndecan-1 and osteonectin. The cyclic changes observed in the mRNAs for these structural components exceeded those for matrix metalloproteinases (MMP)-2, -9 and -13, and for tissue inhibitors of matrix metalloproteinases (TIMP)-1, -2 and -3, where the changes were not statistically significant, despite their apparent role in ECM remodelling in the ovary. These observations support the hypothesis that cyclic changes in the production and degradation of ECM are part of normal ovarian function connected with follicular maturation, rupture and corpus luteum formation.  (+info)

Distribution of membrane cofactor protein (MCP/CD46) on pig tissues. Relevance To xenotransplantation. (6/275)

Membrane cofactor protein (MCP; CD46) is a 50-60 000 MW glycoprotein, expressed on a wide variety of cells and tissues in man, which plays an important role in regulating complement activation. Human MCP has also been shown to be the receptor for measles virus. We have recently identified the pig analogue of MCP and demonstrated that pig MCP has cofactor activity for factor I-mediated cleavage of C3b when these components are derived either from pig or human. As a consequence, pig MCP is an efficient regulator of the classic and alternative pathways of human and pig complement. In order to define the potential importance of MCP in protecting against complement activation in the pig, we have conducted a comprehensive survey of its distribution in pig cells and organs. As in humans, MCP in the pig is broadly and abundantly distributed. Pig MCP is highly expressed on all circulating cells, including erythrocytes, in contrast to its absence on human erythrocytes. Multiple isoforms of MCP are found on cells and in tissues, probably representing products of alternative splicing analogous to those found in man. MCP is abundantly expressed throughout all tissues examined with particularly strong staining on the vascular endothelium. Connective tissue elements within liver and testis are also strongly stained by anti-pig MCP antibodies. Pig MCP is expressed only weakly on skeletal muscle cells and expression is absent from smooth muscle cells in the lung and vessel walls, sites at which human MCP is expressed. Of particular note, MCP is not expressed in B-cell areas of the germinal centres of lymph nodes.  (+info)

Increased incidence of apoptosis in non-labour-affected cytotrophoblast cells in term fetal membranes overlying the cervix. (7/275)

A regional reduction in the cellularity of the cytotrophoblastic and decidual layers occurs in the fetal membranes overlying the cervix in the lower uterine segment prior to labour. Although the mechanism(s) involved are not known it could result from regionally increased apoptosis, the histological manifestation of programmed cell death, or decreased proliferation. Apoptosis was assessed in regionally sampled fetal membranes from women undergoing elective Caesarean section (n = 14) by the presence of apoptotic bodies by light and electron microscopy. Cell proliferation was assessed by immunocytochemical detection of the protein Ki-67. Apoptotic bodies were identified in all regions of the fetal membrane with the highest incidence found within the cytotrophoblast layer. However, this layer in fetal membranes biopsied over the cervix contained significantly more apoptotic bodies (mean +/- SD 0.085 +/- 0.020%) compared to the layer in fetal membranes obtained from the mid-zone (0.020 +/- 0.008%) apoptotic bodies. Isolated Ki-67 positive cells were detected in the cytotrophoblast layer, but no regional differences in their incidence were seen. Fetal membranes also failed to exhibit significant immunoreactivity for BCL-2 but exhibited strong BAX immunoreactivity within the decidual layer. We conclude that the regionally increased incidence of apoptosis in the cytotrophoblastic layer in the membrane overlying the cervix may account for the reduction in its cellularity but not the relative decrease in the decidual layer. Given the consequence of the loss of local function in degrading uterotonins and stabilizing the fetal membrane, the study of the regulation of apoptosis in these cells may have important implications for fetal membrane rupture and parturition.  (+info)

Lipopolysaccharide-activated macrophages stimulate the synthesis of collagen type I and C-fibronectin in cultured pancreatic stellate cells. (8/275)

We have recently identified and characterized pancreatic stellate cells (PSC) in rats and humans (Gastroenterology 1998, 15:421-435). PSC are suggested to represent the main cellular source of extracellular matrix in chronic pancreatitis. Now we describe a paracrine stimulatory loop between human macrophages and PSC (rat and human) that results in an increased extracellular matrix synthesis. Native and transiently acidified supernatants of cultured macrophages were added to cultured PSC in the presence of 0.1% fetal calf serum. Native supernatants of lipopolysaccharide-activated macrophages stimulated the synthesis of collagen type I 1.38 +/- 0.09-fold of control and c-fibronectin 1.89 +/- 0.18-fold of control. Transiently acidified supernatants stimulated collagen type I and c-fibronectin 2.10 +/- 0.2-fold and 2.80 +/- 0.05-fold of control, respectively. Northern blot demonstrated an increased expression of the collagen-I-(alpha-1)-mRNA and fibronectin-mRNA in PSC 10 hours after addition of the acidified macrophage supernatants. Cell proliferation measured by bromodeoxyuridine incorporation was not influenced by the macrophage supernatants. Unstimulated macrophages released 1.97 pg TGFbeta1/microgram of DNA over 24 hours and lipopolysaccharide-activated macrophages released 6.61pg TGFbeta1/microgram of DNA over 24 hours. These data together with the results that, in particular, transiently acidified macrophage supernatants increased matrix synthesis, identify TGFbeta as the responsible mediator. In conclusion, our data demonstrate a paracrine stimulation of matrix synthesis of pancreatic stellate cells via TGFbeta1 released by activated macrophages. We suggest that macrophages might play a pivotal role in the development of pancreas fibrosis.  (+info)