GDF5 coordinates bone and joint formation during digit development. (1/1192)

A functional skeletal system requires the coordinated development of many different tissue types, including cartilage, bones, joints, and tendons. Members of the Bone morphogenetic protein (BMP) family of secreted signaling molecules have been implicated as endogenous regulators of skeletal development. This is based on their expression during bone and joint formation, their ability to induce ectopic bone and cartilage, and the skeletal abnormalities present in animals with mutations in BMP family members. One member of this family, Growth/differentiation factor 5 (GDF5), is encoded by the mouse brachypodism locus. Mice with mutations in this gene show reductions in the length of bones in the limbs, altered formation of bones and joints in the sternum, and a reduction in the number of bones in the digits. The expression pattern of Gdf5 during normal development and the phenotypes seen in mice with single or double mutations in Gdf5 and Bmp5 suggested that Gdf5 has multiple functions in skeletogenesis, including roles in joint and cartilage development. To further understand the function of GDF5 in skeletal development, we assayed the response of developing chick and mouse limbs to recombinant GDF5 protein. The results from these assays, coupled with an analysis of the development of brachypodism digits, indicate that GDF5 is necessary and sufficient for both cartilage development and the restriction of joint formation to the appropriate location. Thus, GDF5 function in the digits demonstrates a link between cartilage development and joint development and is an important determinant of the pattern of bones and articulations in the digits.  (+info)

Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. (2/1192)

OBJECTIVE: To analyse the relations between the urinary levels of type II collagen C-telopeptide (CTX-II) and glucosyl-galactosyl pyridinoline (Glc-Gal-PYD)-two newly developed biochemical markers of type II collagen and synovial tissue destruction respectively-disease activity and the severity of joint destruction in patients with knee osteoarthritis (OA). The clinical performance of these two new markers was compared with that of a panel of other established biochemical markers of connective tissue metabolism. METHODS: The following biochemical markers were measured in a group of 67 patients with knee OA (mean age 64 years, median disease duration eight years ) and in 67 healthy controls: for bone, serum osteocalcin, serum and urinary C-telopeptide of type I collagen (CTX-I); for cartilage, urinary CTX-II, serum cartilage oligomeric matrix protein (COMP), and serum human cartilage glycoprotein 39 (YKL-40); for synovium, urinary Glc-Gal-PYD, serum type III collagen N-propeptide (PIIINP), serum hyaluronic acid (HA); and for inflammation, serum C reactive protein. Biochemical markers were correlated with pain and physical function (WOMAC index) and with quantitative radiographic evaluation of the joint space using the posteroanterior view of the knees flexed at 30 degrees. RESULTS: All bone turnover markers were decreased in patients with knee OA compared with controls (-36%, -38%, and -52%, p<0.0001 for serum osteocalcin, serum CTX-I and urinary CTX-I, respectively). Serum COMP (+16%, p=0.0004), urinary CTX-II (+25%, p=0.0009), urinary Glc-Gal-PYD (+18%, p=0.028), serum PIIINP (+33%, p<0.0001), and serum HA (+ 233%, p<0.0001) were increased. By univariate analyses, increased urinary Glc-Gal-PYD (r=0.41, p=0.002) and decreased serum osteocalcin (r=-0.30, p=0.025) were associated with a higher total WOMAC index. Increased urinary CTX-II (r=-0.40, p=0.0002) and Glc-Gal-PYD (r=-0.30, p=0.0046) and serum PIIINP (r=-0.29, p=0.0034) were the only markers which correlated with joint surface area. By multivariate analyses, urinary Glc-Gal-PYD and CTX-II were the most important predictors of the WOMAC index and joint damage, respectively. CONCLUSION: Knee OA appears to be characterised by a systemic decrease of bone turnover and increased cartilage and synovial tissue turnover. CTX-II, Glc-Gal-PYD, and PIIINP may be useful markers of disease severity in patients with knee OA.  (+info)

Sp3 represses the Sp1-mediated transactivation of the human COL2A1 gene in primary and de-differentiated chondrocytes. (3/1192)

Sp1 and Sp3 effects on the transcription of the human alpha1(II) procollagen gene (COL2A1) were investigated in both differentiated and de-differentiated rabbit articular chondrocytes. Transient transfection with constructs of deleted COL2A1 promoter sequences driving the luciferase reporter gene revealed that the region spanning -266 to +121 base pairs showed Sp1-enhancing effects, whatever the differentiation state. In contrast, Sp3 did not influence COL2A1 gene transcription. Concomitant overexpression of the two Sp proteins demonstrated that Sp3 blocked the Sp1 induction of COL2A1 promoter activity. Moreover, inhibition of Sp1/Sp3 binding to their target DNA sequence decreased both COL2A1 gene transcription and Sp1-enhancing effects. DNase I footprinting and gel retardation assays revealed that Sp1 and Sp3 bind specifically to cis-sequences of the COL2A1 gene promoter whereby they exert their transcriptional effects. Sp1 and Sp3 levels were found to be reduced in de-differentiated chondrocytes, as revealed by DNA-binding and immunochemical study. Sp1 specifically activated collagen neosynthesis whatever the differentiation state of chondrocytes, suggesting that this factor exerts a major role in the expression of collagen type II. However, our data indicate that type II collagen-specific expression in chondrocytes depend on both the Sp1/Sp3 ratio and cooperation of Sp1 with other transcription factors, the amounts of which are also modulated by phenotype alteration.  (+info)

IL-10-deficient B10.Q mice develop more severe collagen-induced arthritis, but are protected from arthritis induced with anti-type II collagen antibodies. (4/1192)

IL-10 is a pleiotropic cytokine with stimulatory and inhibitory properties, and is thought to have a protective role in rheumatoid arthritis and collagen-induced arthritis (CIA). In this study, we investigated how IL-10 deficiency affects CIA and anti-collagen type II (CII) Ab-transferred arthritis in C57BL/10.Q (B10.Q) mice. The B10.Q.IL-10(-/-) mice had an 8-cM 129/Ola fragment around the IL-10 gene. The mice were treated with antibiotics, appeared healthy, and had no colitis. T cells from IL-10(-/-) mice expressed similar levels of IFN-gamma, IL-2, and IL-4 after mitogen stimulation; however, macrophages showed a reduced TNF-alpha production compared with IL-10(+/-) littermates. IL-10(-/-) mice had an increased incidence, and a more severe CIA disease than the IL-10(+/-) littermates. To study the role of IL-10 in T cell tolerance, IL-10(-/-) were crossed into mice carrying the immunodominant epitope, CII(256-270), in cartilage (MMC) or in skin (TSC). Both IL-10(-/-) and IL-10(+/-) MMC and TSC mice were completely tolerized against CIA, indicating that lack of IL-10 in this context did not break tolerance. To investigate whether IL-10 was important in the effector phase of CIA, arthritis was induced with anti-CII Abs. Surprisingly, IL-10(-/-) were less susceptible to Ab-transferred arthritis, as only 30% showed signs of disease compared with 90% of the littermates. Therefore, IL-10 seemed to have a protective role in CIA, but seemed to exacerbate the arthritogenicity of anti-CII Abs. These data emphasize the importance of studying IL-10 in a defined genetic context in vivo, to understand its role in a complex disease like arthritis.  (+info)

AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor-deficient mice. (5/1192)

Autoimmune collagen-induced arthritis (CIA) in IFN-gammaR-deficient DBA/1 mice was shown to be reduced in severity by treatment with the bicyclam derivative AMD3100, a specific antagonist of the interaction between the chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4. The beneficial effect of the CXCR4 antagonist was demonstrable when treatment was initiated between the time of immunization and appearance of the first symptoms. Treatment also reduced the delayed-type hypersensitivity response to the autoantigen, collagen type II. These observations are indicative of an action on a late event in the pathogenesis, such as chemokine-mediated attraction of leukocytes toward joint tissues. The notion of SDF-1 involvement was further supported by the observation that exogenous SDF-1 injected in periarthritic tissue elicited an inflammatory response that could be inhibited by AMD3100. The majority of leukocytes harvested from inflamed joints of mice with CIA were found to be Mac-1(+) and CXCR4(+), and AMD3100 was demonstrated to interfere specifically with chemotaxis and Ca(2+) mobilization induced in vitro by SDF-1 on Mac-1(+)/CXCR4(+) splenocytes. We conclude that SDF-1 plays a central role in the pathogenesis of murine CIA, by attracting Mac-1(+)/CXCR4(+) cells to the inflamed joints.  (+info)

Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor. (6/1192)

OBJECTIVE: To investigate the effects of culture conditions, serum and specific cytokines such as insulin-like growth factor (IGF) 1 and interleukin (IL) 1alpha on phenotype and cell survival in cultures of Syrian hamster embryonic chondrocyte-like cells (DES4(+).2). METHODS: Proteins and RNA extracted from subconfluent and confluent early- and late-passage DES4(+).2 cells cultured in the presence or absence of serum and IL-1alpha or IGF-1 or both cytokines together were analysed for the expression of chondrocyte-specific genes and for the chondrogenic transcription factor Sox-9 by Western and Northern blotting. Apoptosis was assessed by agarose gel electrophoresis of labelled low-molecular weight DNA extracted from DES4(+).2 cells and another Syrian hamster embryonic chondrocyte-like cell line, 10W(+).1, cultured under the different conditions and treatments. RESULTS: Early passage DES4(+).2 cells expressed chondrocyte-specific molecules such as collagen types alpha1(II) and alpha1(IX), aggrecan, biglycan and link protein and collagen types alpha1(I) and alpha1(X) mRNAs, suggesting a prehypertrophic chondrocyte-like phenotype. The expression of all genes investigated was cell density- and serum-dependent and was low to undetectable in cell populations from later passages. Early-passage DES4(+).2 and 10W(+).1 cells survived when cultured at low cell density, but died by apoptosis when cultured at high cell density in the absence of serum or IGF-1. IGF-1 and IL-1alpha had opposite and antagonistic effects on the chondrocyte phenotype and survival. Whereas IL-1alpha acting alone suppressed cartilage-specific gene expression without significantly affecting cell survival, IGF-1 increased the steady-state mRNA levels and relieved the IL-1alpha-induced suppression of all the chondrocyte-specific genes investigated; it also enhanced chondrocyte survival. Suppression of the chondrocyte phenotype by the inflammatory cytokine IL-1alpha correlated with marked down-regulation of the transcription factor Sox-9, which was relieved by IGF-1. The expression of the Sox9 gene was closely correlated with the expression of the chondrocyte-specific genes under all conditions and treatments. CONCLUSIONS: The results suggest that the effects of cartilage anabolic and catabolic cytokines IGF-1 and IL-1alpha on the expression of the chondrocyte phenotype are mediated by Sox-9. As Sox-9 appears to be essential for matrix production, the potent effect of IL-1alpha in suppressing Sox-9 expression may limit the ability of cartilage to repair during inflammatory joint diseases.  (+info)

Msx2 is a repressor of chondrogenic differentiation in migratory cranial neural crest cells. (7/1192)

During early mouse embryogenesis, cranial neural crest cells (CNCC) emigrate from the posterior midbrain and rhombomeres 1 and 2 of the anterior hindbrain into the first branchial arch-derived maxillary and mandibular processes and there provide cell lineages for several phenotypes, including cartilage, bone, and tooth. Here, we report that Sox9 and Msx2 were coexpressed in a subpopulation of CNCC during their migration. Because Sox9 is a transactivator of chondrogenesis, and Msx genes can act as transcriptional repressors, we hypothesized that Sox9 expression indicates the determination of CNCC-derived chondrogenic cell lineage and that Msx2 represses chondrogenic differentiation until CNCC migration is completed within the mandibular processes. To test whether Msx2 represses chondrogenesis, we designed experiments to inhibit Msx2 function in migratory CNCC in primary cultures through the expression of loss-of-function Msx2 mutants. We showed that infection of migratory CNCC with adenovirus Msx2 mutants accelerated the rate and extent of chondrogenesis, as indicated by the expression level of type II collagen and aggrecan, and the amount of alcian blue staining. Adenovirus infections did not apparently interfere with CNCC proliferation or migration. These findings suggest that an important early event in craniofacial morphogenesis is a transient expression of both Sox9 and Msx2 during emigration into the forming mandibular processes followed by restricted expression of Sox9 within CNCC- derived chondroprogenitor cells. We conclude that Msx2 serves as a repressor of chondrogenic differentiation during CNCC migration.  (+info)

Contacts with fibrils containing collagen I, but not collagens II, IX, and XI, can destabilize the cartilage phenotype of chondrocytes. (8/1192)

OBJECTIVE: Cell-matrix interactions are important regulators of cellular functions, including matrix synthesis, proliferation and differentiation. This is well exemplified by the characteristically labile phenotype of chondrocytes that is lost in monolayer culture but is stabilized in suspension under appropriate conditions. We were interested in the role of collagen suprastructures in maintaining or destabilizing the cartilage phenotype of chondrocytes. DESIGN: Primary sternal chondrocytes from 17-day-old chick embryos were cultured in gels of fibrils reconstituted from soluble collagen I from various sources. The culture media either contained or lacked FBS. Cells were cultured for up to 28 days and the evolution of the phenotype of the cells was assessed by their collagen expression (collagens II and X for differentiated chondrocytes and hypertrophic chodrocytes, repectively; collagen I for phenotypically modulated cells), or by their secretion of alkaline phosphatase (hypertrophic cartilage phenotype). RESULTS: The cells often retained their differentiated phenotype only if cultured with serum. Under serum-free conditions, cartilage characteristics were lost. The cells acquired a fibroblast-like shape and, later, synthesized collagen I instead of cartilage collagens. Shape changes were influenced by beta1-integrin-activity, whereas other matrix receptors were important for alterations of collagen patterns. Heterotypic fibrils reconstituted from collagens II, IX, and XI did not provoke this phenotypic instability. CONCLUSIONS: Chondrocytes sensitively recognize the suprastructures of collagen fibrils in their environment. Cellular interactions with fibrils with appropriate molecular organizations, such as that in cartilage fibrils, result in the maintenance of the differentiated cartilage phenotype. However, other suprastructures, e.g. in reconstituted fibrils mainly containing collagen I, lead to cell-matrix interactions incompatible with the cartilage phenotype. The maintenance of the differentiated traits of chondrocytes is pivotal for the normal function of, e.g., articular cartilage. If pathologically altered matrix suprastructures lead to a dysregulation of collagen production also in vivo compromised cartilage functions inevitably will be propagated further.  (+info)