Coexpression, purification and characterization of the E and S subunits of coenzyme B(12) and B(6) dependent Clostridium sticklandii D-ornithine aminomutase in Escherichia coli. (1/6)

D-Ornithine aminomutase from Clostridium sticklandii comprises two strongly associating subunits, OraS and OraE, with molecular masses of 12,800 and 82,900 Da. Previous studies have shown that in Escherichia coli the recombinant OraS protein is synthesized in the soluble form and OraE as inclusion bodies. Refolding experiments also indicate that the interactions between OraS and OraE and the binding of either pyridoxal phosphate (PLP) or adenosylcobalamin (AdoCbl) play important roles in the refolding process. In this study, the DNA fragment containing both genes was cloned into the same expression vector and coexpression of the oraE and oraS genes was carried out in E. coli. The solubility of the coexpressed OraS and OraE increases with decreasing isopropyl thio-beta-D-galactoside induction temperature. Among substrate analogues tested, only 2,4-diamino-n-butyric acid displays competitive inhibition of the enzyme with a K(i) of 96 +/- 14 microm. Lys629 is responsible for the binding of PLP. The apparent K(d) for coenzyme B(6) binding to d-ornithine aminomutase is 224 +/- 41 nm as measured by equilibrium dialysis. The mutant protein, OraSE-K629M, is successfully expressed. It is catalytically inactive and unable to bind PLP. Because no coenzyme is involved in protein folding during in vivo translation of OraSE-K629M in E. coli, in vitro refolding of the enzyme employs a different folding mechanism. In both cases, the association of the S and E subunit is important for D-ornithine aminomutase to maintain an active conformation.  (+info)

A locking mechanism preventing radical damage in the absence of substrate, as revealed by the x-ray structure of lysine 5,6-aminomutase. (2/6)

Lysine 5,6-aminomutase is an adenosylcobalamin and pyridoxal-5'-phosphate-dependent enzyme that catalyzes a 1,2 rearrangement of the terminal amino group of dl-lysine and of l-beta-lysine. We have solved the x-ray structure of a substrate-free form of lysine-5,6-aminomutase from Clostridium sticklandii. In this structure, a Rossmann domain covalently binds pyridoxal-5'-phosphate by means of lysine 144 and positions it into the putative active site of a neighboring triosephosphate isomerase barrel domain, while simultaneously positioning the other cofactor, adenosylcobalamin, approximately 25 A from the active site. In this mode of pyridoxal-5'-phosphate binding, the cofactor acts as an anchor, tethering the separate polypeptide chain of the Rossmann domain to the triosephosphate isomerase barrel domain. Upon substrate binding and transaldimination of the lysine-144 linkage, the Rossmann domain would be free to rotate and bring adenosylcobalamin, pyridoxal-5'-phosphate, and substrate into proximity. Thus, the structure embodies a locking mechanism to keep the adenosylcobalamin out of the active site and prevent radical generation in the absence of substrate.  (+info)

The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNA Cys deacylase. (3/6)

Bacterial prolyl-tRNA synthetases and some smaller paralogs, YbaK and ProX, can hydrolyze misacylated Cys-tRNA Pro or Ala-tRNA Pro. To assess the significance of this quality control editing reaction in vivo, we tested Escherichia coli ybaK for its ability to suppress the E. coli thymidylate synthase thyA:146CCA missense mutant strain, which requires Cys-tRNA(Pro) for growth in the absence of thymine. Missense suppression was observed in a ybaK deletion background, suggesting that YbaK functions as a Cys-tRNA Pro deacylase in vivo. In vitro studies with the full set of 20 E. coli aminoacyl-tRNAs revealed that the Haemophilus influenzae and E. coli YbaK proteins are moderately general aminoacyl-tRNA deacylases that preferentially hydrolyze Cys-tRNA Pro and Cys-tRNA Cys and are also weak deacylases that cleave Gly-tRNA, Ala-tRNA, Ser-tRNA, Pro-tRNA, and Met-tRNA. The ProX protein acted as an aminoacyl-tRNA deacylase that cleaves preferentially Ala-tRNA and Gly-tRNA. The potential of H. influenzae YbaK to hydrolyze in vivo correctly charged Cys-tRNA Cys was tested in E. coli strain X2913 (ybaK+). Overexpression of H. influenzae ybaK decreased the in vivo ratio of Cys-tRNA Cys to tRNA Cys from 65 to 35% and reduced the growth rate of strain X2913 by 30% in LB medium. These data suggest that YbaK-mediated hydrolysis of aminoacyl-tRNA can influence cell growth.  (+info)

Mechanism of radical-based catalysis in the reaction catalyzed by adenosylcobalamin-dependent ornithine 4,5-aminomutase. (4/6)

 (+info)

Large-scale domain dynamics and adenosylcobalamin reorientation orchestrate radical catalysis in ornithine 4,5-aminomutase. (5/6)

 (+info)

Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence. (6/6)

 (+info)