(1/29088) Mapping of the homothallic genes, HM alpha and HMa, in Saccharomyces yeasts.

Two of the three homothallic genes, HM alpha and HMa, showed direct linkage to the mating-type locus at approximately 73 and 98 strans (57 and 65 centimorgans [cM], respectively, whereas, the other, HO, showed no linkage to 25 standard markers distributed over 17 chromosomes including the mating-type locus. To determine whether the HM alpha and HMa loci located on the left or right side of the mating-type locus, equations for three factor analysis of three linked genes were derived. Tetrad data were collected and were compared with expected values by chi 2 statistics. Calculations indicated that the HM alpha gene is probably located on the right arm at 95 strans (65 cM) from the centromere and the HMa locus at approximately 90 strans (64 cM) on the left arm of chromosome III.  (+info)

(2/29088) The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development.

Csx/Nkx2.5 is a vertebrate homeobox gene with a sequence homology to the Drosophila tinman, which is required for the dorsal mesoderm specification. Recently, heterozygous mutations of this gene were found to cause human congenital heart disease (Schott, J.-J., Benson, D. W., Basson, C. T., Pease, W., Silberbach, G. M., Moak, J. P., Maron, B. J., Seidman, C. E. and Seidman, J. G. (1998) Science 281, 108-111). To investigate the functions of Csx/Nkx2.5 in cardiac and extracardiac development in the vertebrate, we have generated and analyzed mutant mice completely null for Csx/Nkx2.5. Homozygous null embryos showed arrest of cardiac development after looping and poor development of blood vessels. Moreover, there were severe defects in vascular formation and hematopoiesis in the mutant yolk sac. Interestingly, TUNEL staining and PCNA staining showed neither enhanced apoptosis nor reduced cell proliferation in the mutant myocardium. In situ hybridization studies demonstrated that, among 20 candidate genes examined, expression of ANF, BNP, MLC2V, N-myc, MEF2C, HAND1 and Msx2 was disturbed in the mutant heart. Moreover, in the heart of adult chimeric mice generated from Csx/Nkx2.5 null ES cells, there were almost no ES cell-derived cardiac myocytes, while there were substantial contributions of Csx /Nkx2.5-deficient cells in other organs. Whole-mount &bgr;-gal staining of chimeric embryos showed that more than 20% contribution of Csx/Nkx2. 5-deficient cells in the heart arrested cardiac development. These results indicate that (1) the complete null mutation of Csx/Nkx2.5 did not abolish initial heart looping, (2) there was no enhanced apoptosis or defective cell cycle entry in Csx/Nkx2.5 null cardiac myocytes, (3) Csx/Nkx2.5 regulates expression of several essential transcription factors in the developing heart, (4) Csx/Nkx2.5 is required for later differentiation of cardiac myocytes, (5) Csx/Nkx2. 5 null cells exert dominant interfering effects on cardiac development, and (6) there were severe defects in yolk sac angiogenesis and hematopoiesis in the Csx/Nkx2.5 null embryos.  (+info)

(3/29088) Identification of sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch.

The mouse mutants of the hemimelia-luxate group (lx, lu, lst, Dh, Xt, and the more recently identified Hx, Xpl and Rim4; [1] [2] [3] [4] [5]) have in common preaxial polydactyly and longbone abnormalities. Associated with the duplication of digits are changes in the regulation of development of the anterior limb bud resulting in ectopic expression of signalling components such as Sonic hedgehog (Shh) and fibroblast growth factor-4 (Fgf4), but little is known about the molecular causes of this misregulation. We generated, by a transgene insertion event, a new member of this group of mutants, Sasquatch (Ssq), which disrupted aspects of both anteroposterior (AP) and dorsoventral (DV) patterning. The mutant displayed preaxial polydactyly in the hindlimbs of heterozygous embryos, and in both hindlimbs and forelimbs of homozygotes. The Shh, Fgf4, Fgf8, Hoxd12 and Hoxd13 genes were all ectopically expressed in the anterior region of affected limb buds. The insertion site was found to lie close to the Shh locus. Furthermore, expression from the transgene reporter has come under the control of a regulatory element that directs a pattern mirroring the endogenous expression pattern of Shh in limbs. In abnormal limbs, both Shh and the reporter were ectopically induced in the anterior region, whereas in normal limbs the reporter and Shh were restricted to the zone of polarising activity (ZPA). These data strongly suggest that Ssq is caused by direct interference with the cis regulation of the Shh gene.  (+info)

(4/29088) Superimposed histologic and genetic mapping of chromosome 9 in progression of human urinary bladder neoplasia: implications for a genetic model of multistep urothelial carcinogenesis and early detection of urinary bladder cancer.

The evolution of alterations on chromosome 9, including the putative tumor suppressor genes mapped to the 9p21-22 region (the MTS genes), was studied in relation to the progression of human urinary bladder neoplasia by using whole organ superimposed histologic and genetic mapping in cystectomy specimens and was verified in urinary bladder tumors of various pathogenetic subsets with longterm follow-up. The applicability of chromosome 9 allelic losses as non-invasive markers of urothelial neoplasia was tested on voided urine and/or bladder washings of patients with urinary bladder cancer. Although sequential multiple hits in the MTS locus were documented in the development of intraurothelial precursor lesions, the MTS genes do not seem to represent a major target for p21-23 deletions in bladder cancer. Two additional tumor suppressor genes involved in bladder neoplasia located distally and proximally to the MTS locus within p22-23 and p11-13 regions respectively were identified. Several distinct putative tumor suppressor gene loci within the q12-13, q21-22, and q34 regions were identified on the q arm. In particular, the pericentromeric q12-13 area may contain the critical tumor suppressor gene or genes for the development of early urothelial neoplasia. Allelic losses of chromosome 9 were associated with expansion of the abnormal urothelial clone which frequently involved large areas of urinary bladder mucosa. These losses could be found in a high proportion of urothelial tumors and in voided urine or bladder washing samples of nearly all patients with urinary bladder carcinoma.  (+info)

(5/29088) TIF1gamma, a novel member of the transcriptional intermediary factor 1 family.

We report the cloning and characterization of a novel member of the Transcriptional Intermediary Factor 1 (TIF1) gene family, human TIF1gamma. Similar to TIF1alpha and TIF1beta, the structure of TIF1beta is characterized by multiple domains: RING finger, B boxes, Coiled coil, PHD/TTC, and bromodomain. Although structurally related to TIF1alpha and TIF1beta, TIF1gamma presents several functional differences. In contrast to TIF1alpha, but like TIF1beta, TIF1 does not interact with nuclear receptors in yeast two-hybrid or GST pull-down assays and does not interfere with retinoic acid response in transfected mammalian cells. Whereas TIF1alpha and TIF1beta were previously found to interact with the KRAB silencing domain of KOX1 and with the HP1alpha, MODI (HP1beta) and MOD2 (HP1gamma) heterochromatinic proteins, suggesting that they may participate in a complex involved in heterochromatin-induced gene repression, TIF1gamma does not interact with either the KRAB domain of KOX1 or the HP1 proteins. Nevertheless, TIF1gamma, like TIF1alpha and TIF1beta, exhibits a strong silencing activity when tethered to a promoter. Since deletion of a novel motif unique to the three TIF1 proteins, called TIF1 signature sequence (TSS), abrogates transcriptional repression by TIF1gamma, this motif likely participates in TIF1 dependent repression.  (+info)

(6/29088) Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements.

We report striking differences in the substrate specificities of two human SR proteins, SF2/ASF and SC35, in constitutive splicing. beta-Globin pre-mRNA (exons 1 and 2) is spliced indiscriminately with either SR protein. Human immunodeficiency virus tat pre-mRNA (exons 2 and 3) and immunoglobulin mu-chain (IgM) pre-mRNA (exons C3 and C4) are preferentially spliced with SF2/ASF and SC35, respectively. Using in vitro splicing with mutated or chimeric derivatives of the tat and IgM pre-mRNAs, we defined specific combinations of segments in the downstream exons, which mediate either positive or negative effects to confer SR protein specificity. A series of recombinant chimeric proteins consisting of domains of SF2/ASF and SC35 in various combinations was used to localize trans-acting domains responsible for substrate specificity. The RS domains of SF2/ASF and SC35 can be exchanged without effect on substrate specificity. The RNA recognition motifs (RRMs) of SF2/ASF are active only in the context of a two-RRM structure, and RRM2 has a dominant role in substrate specificity. In contrast, the single RRM of SC35 can function alone, but its substrate specificity can be influenced by the presence of an additional RRM. The RRMs behave as modules that, when present in different combinations, can have positive, neutral, or negative effects on splicing, depending upon the specific substrate. We conclude that SR protein-specific recognition of specific positive and negative pre-mRNA exonic elements via one or more RRMs is a crucial determinant of the substrate specificity of SR proteins in constitutive splicing.  (+info)

(7/29088) Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA.

Pseudouridine (Psi) residues were localized in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (UsnRNAs) by using the chemical mapping method. In contrast to vertebrate UsnRNAs, S. cerevisiae UsnRNAs contain only a few Psi residues, which are located in segments involved in intermolecular RNA-RNA or RNA-protein interactions. At these positions, UsnRNAs are universally modified. When yeast mutants disrupted for one of the several pseudouridine synthase genes (PUS1, PUS2, PUS3, and PUS4) or depleted in rRNA-pseudouridine synthase Cbf5p were tested for UsnRNA Psi content, only the loss of the Pus1p activity was found to affect Psi formation in spliceosomal UsnRNAs. Indeed, Psi44 formation in U2 snRNA was abolished. By using purified Pus1p enzyme and in vitro-produced U2 snRNA, Pus1p is shown here to catalyze Psi44 formation in the S. cerevisiae U2 snRNA. Thus, Pus1p is the first UsnRNA pseudouridine synthase characterized so far which exhibits a dual substrate specificity, acting on both tRNAs and U2 snRNA. As depletion of rRNA-pseudouridine synthase Cbf5p had no effect on UsnRNA Psi content, formation of Psi residues in S. cerevisiae UsnRNAs is not dependent on the Cbf5p-snoRNA guided mechanism.  (+info)

(8/29088) Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum.

Staufen (Stau) is a double-stranded RNA (dsRNA)-binding protein involved in mRNA transport and localization in Drosophila. To understand the molecular mechanisms of mRNA transport in mammals, we cloned human (hStau) and mouse (mStau) staufen cDNAs. In humans, four transcripts arise by differential splicing of the Stau gene and code for two proteins with different N-terminal extremities. In vitro, hStau and mStau bind dsRNA via each of two full-length dsRNA-binding domains and tubulin via a region similar to the microtubule-binding domain of MAP-1B, suggesting that Stau cross-links cytoskeletal and RNA components. Immunofluorescent double labeling of transfected mammalian cells revealed that Stau is localized to the rough endoplasmic reticulum (RER), implicating this RNA-binding protein in mRNA targeting to the RER, perhaps via a multistep process involving microtubules. These results are the first demonstration of the association of an RNA-binding protein in addition to ribosomal proteins, with the RER, implicating this class of proteins in the transport of RNA to its site of translation.  (+info)