(1/9384) Isolation and purification of rat mammary tumor peroxidase.

7,12-Dimethylbenz(a)anthracene-induced rat mammary tumors often contain high levels of the enzyme perioxidase, a putative marker of estrogen dependence. This enzyme can be effectively extracted with 0.5 M CaCl2, giving rise to a soluble peroxidase with a molecular weight of about 50,000 as determined by gel filtration. This is the same size as the estrogen-induced peroxidase of rat uterus but smaller than other mammalian peroxidases. Further purification of the rat mammary tumor peroxidase by concanavalin A-Sepharose chromatography and hydrophobic interaction chromatography on phenyl Sepharose provides a 640-fold purification of the enzyme.  (+info)

(2/9384) Involvement of poly (ADP-ribose)-polymerase in the Pax-6 gene regulation in neuroretina.

The quail Pax-6 gene is expressed from two promoters named P0 and P1. P0 promoter is under the control of a neuroretina-specific enhancer (EP). This enhancer activates the P0 promoter specifically in neuroretina cells and in a developmental stage-dependent manner. The EP enhancer binds efficiently, as revealed by southwestern experiments, to a 110 kDa protein present in neuroretina cells but not in Quail Embryos Cells and Retinal Pigmented Epithelium which do not express the P0-initiated mRNAs. To study the role of p110 in Pax-6 regulation, we have purified the p110 from neuroretina cells extracts. Based on the peptide sequence of the purified protein, we have identified the p110 as the poly(ADP-ribose) polymerase (PARP). Using bandshift experiments and footprinting studies, we present evidence that PARP is a component of protein complexes bound to the EP enhancer that increases the on rate of the protein complex formation to DNA. Using PARP inhibitors (3AB and 6.5 Hphe), we show that these products are able to inhibit EP enhancer activity in neuroretina cells. Finally, we demonstrate that these inhibitors are able to decrease the expression of the P0-initiated mRNA in the MC29-infected RPE cells which, in contrast to the RPE cells, accumulated the PARP in response to v-myc expression. Our results suggest that PARP is involved in the Pax-6 regulation.  (+info)

(3/9384) Comparison of the fibrin-binding activities in the N- and C-termini of fibronectin.

Fibronectin (Fn) binds to fibrin in clots by covalent and non-covalent interactions. The N- and C-termini of Fn each contain one non-covalent fibrin-binding site, which are composed of type 1 (F1) structural repeats. We have previously localized the N-terminal site to the fourth and fifth F1 repeats (4F1.5F1). In the current studies, using proteolytic and recombinant proteins representing both the N- and C-terminal fibrin-binding regions, we localized and characterized the C-terminal fibrin-binding site, compared the relative fibrin-binding activities of both sites and determined the contribution of each site to the fibrin-binding activity of intact Fn. By fibrin-affinity chromatography, a protein composed of the 10F1 repeat through to the C-terminus of Fn (10F1-COOH), expressed in COS-1 cells, and 10F1-12F1, produced in Saccharomyces cerevisiae, displayed fibrin-binding activity. However, since 10F1 and 10F1.11F1 were not active, the presence of 12F1 is required for fibrin binding. A proteolytic fragment of 14.4 kDa, beginning 14 residues N-terminal to 10F1, was isolated from the fibrin-affinity matrix. Radio-iodinated 14.4 kDa fibrin-binding peptide/protein (FBP) demonstrated a dose-dependent and saturable binding to fibrin-coated wells that was both competitively inhibited and reversed by unlabelled 14.4 kDa FBP. Comparison of the fibrin-binding affinities of proteolytic FBPs from the N-terminus (25.9 kDa FBP), the C-terminus (14.4 kDa) and intact Fn by ELISA yielded estimated Kd values of 216, 18 and 2.1 nM, respectively. The higher fibrin-binding affinity of the N-terminus was substantiated by the ability of both a recombinant 4F1.5F1 and a monoclonal antibody (mAb) to this site to maximally inhibit biotinylated Fn binding to fibrin by 80%, and by blocking the 90% inhibitory activity of a polyclonal anti-Fn, by absorption with the 25.9 kDa FBP. We propose that whereas the N-terminal site appears to contribute to most of the binding activity of native Fn to fibrin, the specific binding of the C-terminal site may strengthen this interaction.  (+info)

(4/9384) Purification and characterization of an alpha-galactosyltransferase from Trypanosoma brucei.

A membrane-associated galactosyltransferase from Trypanosoma brucei was purified 34000-fold by affinity chromatography on UDP-hexanolamine-Sepharosetrade mark. Using SDS/PAGE under reducing conditions, the isolated enzyme ran as a relatively broad band with apparent molecular masses of 53 kDa and 52 kDa, indicative of glycosylation and the existence of two isoforms. N-Glycosylation of the enzyme was subsequently confirmed using Western blotting and either specific binding of concanavalin A or peptide-N4-(N-acetylglucosaminyl)asparagine amidase digestion. The de-N-glycosylated enzyme ran with apparent molecular masses of 51 kDa and 50 kDa, indicative of a single N-glycosylation site. The galactosyltransferase exhibited a pH optimum at 7.2 and had a pronounced requirement for Mn2+ ions (KM=2.5 mM) for its action. The transferase activity was independent of the concentration of Triton X-100. The enzyme was capable of transferring galactose from UDP-galactose to a variety of galactose-based acceptors in alpha-glycosidic linkages. The apparent KM values for UDP-galactose and for the preferred acceptor substrate N-acetyl-lactosamine are 46 microM and 4.5 mM respectively. From these results we would like to suggest that the galactosyltransferase functions in the processing of terminal N-acetyl-lactosamine structures of trypanosomal glycoproteins.  (+info)

(5/9384) Enrichment of enzyme activity on deformylation of 1-NFK-lysozyme.

The formamide linkage of an inactive lysozyme derivative (1-NFK-lysozyme), formed by selective ozonization of tryptophan 62 in hen egg-white lysozyme [EC 3.2.1.17] was hydrolyzed with dilute acid faster in the frozen state at about --10 degrees than at 20 degrees. On hydrolysis of 1-NFK-lysozyme the low lytic activity increased to approximately 80% of that of native lysozyme. It is suggested that the binding ability associated with kynurenine 62 in the lysozyme derivative formed by this hydrolysis may be responsible for increase in enzymatic activity.  (+info)

(6/9384) Hydrophobic interaction of human, mouse, and rabbit interferons with immobilized hydrocarbons.

Interferons of human, mouse, and rabbit origin bind to straight chain hydrocarbons immobilized on agarose. The hydrophobic nature of binding is established by the following observations: (a) a positive correlation between the length of hydrocarbon ligand and the strength of interaction; (b) a stronger interaction with hydrocarbon ligands terminated with apolar rather than polar head groups; (c) a lack of dependence of binding on ionic strength and pH of the solvent; (d) a reversal of binding by ethylene glycol, a hydrophobic solute; (e) an increasing eluting efficacy of tetraalkylammonium ions with the length of their alkyl substituents. The hydrophobic interactions of human interferon underlie the efficiency of two-step chromatographic procedures. For example, human embryo kidney interferon can be purified about 3,600-fold by sequential chromatography on (a) concanavalin A-agarose, (b) octyl-agarose. Another two-step procedure: (a) concanavalin A-agarose, (b) L-tryptophan-agarose, gives about 10,000-fold purification. The overall recovery of interferon in both cases in close to 90%.  (+info)

(7/9384) Removal of non-specific serum inhibitors of haemagglutination of rubella virus by treatment with dodecylamine-gel.

The suitability of using dodecylamine-gel for removing the serum non-antibody-like inhibitors of haemagglutination by rubella was studied. Compared with kaolin and MnCl2/heparin treatment this new procedure appears to have a higher specificity since it removes the non-antibody-like inhibitors from serum without affecting the immunoglobulin level significantly. The potential application of this procedure in routine serological analysis for rubella virus infection is discussed.  (+info)

(8/9384) Purification of two dexamethasone-binding proteins from rat-liver cytosol.

Two dexamethasone-binding proteins have been purified from rat liver cytosol. The main purification steps are: precipitation by protamine sulphate, affinity chromatography on CH-Sepharose 4B to which 11-deoxycorticosterone is linked through a disulfide bond and DEAE-cellulose chromatography. Two binding components elute from the DEAE-cellulose column at 0.12 M and 0.2 M NaCl, respectively. By means of dodecylsulphate/polyacrylamide gel electrophoresis it was demonstrated that both components are composed predominantly of a single polypeptide with molecular weights of about 45 000 and 90 000. Antibodies to the two polypeptides have been elicited in rabbits. The antibodies to the 45 000-Mr polypeptide cross react with the 90 000-Mr component. Likewise the antibodies to the 90 000-Mr protein precipitate the 45 000-Mr polypeptide. Either of the two antibody preparations immunoprecipitates the major part (approximately 70%) of the dexamethasone-binding activity of the cytosol.  (+info)