Distribution of chondroitin sulfate in cartilage proteoglycans under associative conditions. (1/1490)

Proteoglycan aggregates and proteoglycan subunits were extracted from bovine articular cartilage with guanidine-HC1 folowed by fractionation by equilibrium centrifugation in cesium chloride density gradients. The distribution of chondroitin sulfates (CS) in the cartilage proteoglycans was studied at the disaccharide level by digestion with chondroitinases. In the proteoglycan aggregate fraction, it was observed that the proportion of 4-sulfated disaccharide units to total CS increased from the bottom to the top fractions, whereas that of 6-sulfated disaccharide units was in the reverse order. Thus, the ratio of 4-sulfated disaccharide units to 6-sulfated disaccharide units increased significantly with decreasing density. The proportion of non-sulfated disaccharide units to total CS tended to increase with increasing density. These data indicate a polydisperse distribution of CS chains, under the conditions used here, in proteoglycan aggregates from bovine articular cartilage.  (+info)

Identification and characterization of ligands for L-selectin in the kidney. II. Expression of chondroitin sulfate and heparan sulfate proteoglycans reactive with L-selectin. (2/1490)

Ligands for the leukocyte adhesion molecule L-selectin are expressed not only in lymph node high endothelial venules (HEV) but also in the renal distal tubuli. Here we report that L-selectin-reactive molecules in the kidney are chondroitin sulfate and heparan sulfate proteoglycans of 500-1000 kDa, unlike those in HEV bearing sialyl Lewis X-like carbohydrates. Binding of L-selectin to these molecules was mediated by the lectin domain of L-selectin and required divalent cations. Binding was inhibited by chondroitinase and/or heparitinase but not sialidase. Thus, L-selectin can recognize chondroitin sulfate and heparan sulfate glycosaminoglycans structurally distinct from sialyl Lewis X-like carbohydrates.  (+info)

Action of chondroitinases. II. Numerical calculation of the degree of multiple attack. (3/1490)

Further investigation was carried out on the action patterns of two chondroitinase-AC [EC 4.2.2.5.] preparations obtained from Arthrobacter aurescens and Flavobacterium heparinum. To infer the action patterns of the chondroitinases, we proposed a new method for the calculation of the degree of multiple attack, based on the concept established by Robyt and French ((1967) Arch. Biochem. Biophys. 122, 8-16). It was shown that the degree of multiple attack (DM) is represented by the ratio of the initial velocity of number-average degree of scission to that of viscosity-average degree of scission. By this method, DM for A-Chase was estimated to be 3.03 and for F-chase, 1.31.  (+info)

Molecular cloning and characterization of a human uronyl 2-sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan/chondroitin sulfate. (4/1490)

A partial-length human cDNA with a predicted amino acid sequence homologous to a previously described heparan sulfate iduronyl 2-sulfotransferase (Kobayashi, M., Habuchi, H., Yoneda, M., Habuchi, O., and Kimata, K. (1997) J. Biol. Chem. 272, 13980-13985) was obtained by searching the expressed sequence-tagged data bank. Northern blot analysis was performed using this homologous cDNA as a probe, which demonstrated ubiquitous expression of messages of 5.1 and 2.0 kilobases in a number of human tissues and in several human cancer cell lines. Since the human lymphoma Raji cell line had the highest level of expression, it was used to isolate a full-length cDNA clone. The full-length cDNA was found to contain an open reading frame that predicted a type II transmembrane protein composed of 406 amino acid residues. The cDNA in a baculovirus expression vector was expressed in Sf9 insect cells, and cell extracts were then incubated together with 3'-phosphoadenosine 5'-phospho[35S]sulfate and potential glycosaminoglycan acceptors. This demonstrated substantial sulfotransferase activity with dermatan sulfate, a small degree of activity with chondroitin sulfate, but no sulfotransferase activity with desulfated N-resulfated heparin. Analysis of [35S]sulfate-labeled disaccharide products of chondroitin ABC, chondroitin AC, and chondroitin B lyase treatment demonstrated that the enzyme only transferred sulfate to the 2-position of uronyl residues, which were preponderantly iduronyl residues in dermatan sulfate, but some lesser transfer to glucuronyl residues of chondroitin sulfate.  (+info)

Multiple mechanisms contribute to the avoidance of avian epidermis by sensory axons. (5/1490)

In birds, sensory innervation of skin is restricted to dermis, with few axons penetrating into the epidermis. This pattern of innervation is maintained in vitro, where sensory neurites avoid explants of epidermis but grow readily on dermis. We have used this coculture paradigm to investigate the mechanisms that impede innervation of avian epidermis. The lack of epidermal innervation in birds has been attributed to diffusible chondroitin sulfate proteoglycans (CSPGs) secreted by the epidermis, although direct experimental evidence is weak. We found that elimination of CSPG function with either chondroitinase or neutralizing antibodies did not promote growth of DRG neurites onto epidermis in vitro, indicating that CSPGs alone are not responsible for preventing epidermal innervation. Moreover, the failure of sensory neurites to invade epidermis is not due exclusively to soluble chemorepulsive factors, since sensory neurites also avoid dead epidermis. This inhibition can be overridden, however, by coating epidermis with the growth-promoting molecule laminin, but only if the tissue is killed first. Epidermal innervation of laminin-coated epidermis is even more robust when CSPGs are also eliminated. Thus, the absence of growth-promoting or permissive molecules, such as laminin, may contribute to the failure of sensory neurites to invade avian epidermis. Together these results show that the inhibitory character of avian epidermis is complex. Cell- or matrix-associated CSPGs clearly contribute to the inhibition, but are not solely responsible.  (+info)

Infectious laryngotracheitis virus, an alpha herpesvirus that does not interact with cell surface heparan sulfate. (6/1490)

Among the alpha herpesviruses studied to date, the initial stage of wild-type virus attachment involves an interaction between virally encoded structural envelope glycoproteins (predominantly glycoprotein C) and cell surface heparan sulfate proteoglycans. An analysis of the infectious laryngotracheitis virus (ILTV) glycoprotein C and glycoprotein B sequences suggested that these proteins lacked consensus heparin-binding domains. This indicated that ILTV might attach to its host cell in a heparan-independent manner, distinct from other alpha herpesviruses. The infectivity of two ILTV strains, a tissue-culture-adapted vaccine strain and a virulent field challenge strain, were found to be insensitive to the presence of exogenous heparin or chondroitin. Furthermore, infectivity was retained in chicken embryonic liver cells treated with heparinase. However, 4 degrees C attachment studies and penetration studies in the presence of citrate buffer clearly demonstrated that ILTV attaches stably to and effectively penetrates chicken embryonic liver cells. Consequently, ILTV represents an alpha herpesvirus whose initial attachment step does not involve interactions with heparan or chondroitin sulfate containing proteoglycans.  (+info)

The adhesion of Plasmodium falciparum-infected erythrocytes to chondroitin sulfate A is mediated by P. falciparum erythrocyte membrane protein 1. (7/1490)

Chondroitin sulfate A (CSA) is an important receptor for the sequestration of Plasmodium falciparum in the placenta, but the parasite ligand involved in adhesion has not previously been identified. Here we report the identification of a var gene transcribed in association with binding to CSA and present evidence that the P. falciparum erythrocyte membrane protein 1 product of the gene is the parasite ligand mediating CSA binding. Description of this gene and the implication of P. falciparum erythrocyte membrane protein 1 as the parasite ligand paves the way to a more detailed understanding of the pathogenesis of placental infection and potential therapeutic strategies targeting the interaction.  (+info)

DSD-1-proteoglycan is the mouse homolog of phosphacan and displays opposing effects on neurite outgrowth dependent on neuronal lineage. (8/1490)

DSD-1-PG is a chondroitin sulfate proteoglycan (CSPG) expressed by glial cells that can promote neurite outgrowth from rat embryonic mesencephalic (E14) and hippocampal (E18) neurons, an activity that is associated with the CS glycosaminoglycans (GAGs). Further characterization of DSD-1-PG has included sequencing of peptides from the core protein and the cloning of the corresponding cDNA using polyclonal antisera against DSD-1-PG to screen phage expression libraries. On the basis of these studies we have identified DSD-1-PG as the mouse homolog of phosphacan, a neural rat CSPG. Monoclonal antibodies 3H1 and 3F8 against carbohydrate residues on rat phosphacan recognize these epitopes on DSD-1-PG. The epitopes of the antibodies, L2/HNK-1 and L5/Lewis-X, which have been implicated in functional interactions, are also found on DSD-1-PG. Although DSD-1-PG has previously been shown to promote neurite outgrowth, its upregulation after stab wounding of the CNS and its localization in regions that are considered boundaries to axonal extension suggested that it may also have inhibitory functions. Neonatal dorsal root ganglion (DRG) explants grown on a rich supportive substrate (laminin) with and without DSD-1-PG were strikingly inhibited by the proteoglycan. The inhibitory effects of DSD-1-PG on the DRG explants were not relieved by removal of the CS GAGs, indicating that this activity is associated with the core glycoprotein. The neurite outgrowth from embryonic hippocampal neurons on laminin was not affected by the addition of DSD-1-PG. This indicates that DSD-1-PG/mouse phosphacan can have opposing effects on the process of neurite outgrowth dependent on neuronal lineage.  (+info)