A novel endonuclease of human cells specific for single-stranded DNA. (1/340)

We have fractionated from human aneuploid cell cultures three different enzyme fractions degrading single-stranded DNA. We have purified and characterized one of these DNases; this is an endonuclease working at alkaline pH (around 9.5) and requiring Mg2+ for its activity. The enzyme degrades denatured DNA over 100 times more efficiently than native DNA in optimal conditions. The termini produced by the enzyme have 5'P and 3'OH ends. The enzyme can attack, though at reduced rate, the supertwisted circular molecule of Simian virus 40 DNA, whereas it is inactive on the nicked circular molecule. The ultraviolet irradiation of DNA, whether native or denatured, does not affect its efficiency as substrate of the DNase. The properties of this endonuclease distinguish it from those of the other DNases described previously in mammalian cells; the denomination DNase VI is therefore proposed. Its properties are similar to those of DNases described in Ustilago maydis and Bacillus subtilis, for which an essential role in recombination seems likely.  (+info)

The aconitase of yeast. IV. Studies on iron and sulfur in yeast aconitase. (2/340)

Chemical analyses were carried out to determine the active components of the crystalline aconitase [EC 4.2.1.3] of Candida lipolytica. The enzyme contained 2 atoms of non-heme iron, 1 atom of labile sulfur, and 6 sulfhydryl groups per molecule. One atom of the non-heme iron was released by the addition of metal-chelating agents such as sodium citrate, sodium nitrilotriacetate (NTA) or sodium ethylenediaminetetraacetate (EDTA) without loss of the enzyme activity. The non-heme iron and labile sulfur were released by the addition of sulfhydryl reagents such as rho-chloromercuribenzoate (PCMB), sodium mersalyl or urea with loss of the enzyme activity. o-Phenanthroline reacted with the iron atoms in the enzyme at pH 6.0 with loss of the activity. These results show that yeast aconitase is an iron-sulfur protein and that only one of the two non-heme iron atoms is essential for enzyme activity.  (+info)

In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis. (3/340)

Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates. Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3.  (+info)

Membrane-bound DD-carboxypeptidase and transpeptidase activities from Bacillus megaterium KM at pH 7. General properties, substrate specificity and inhibition by beta-lactam antibiotics. (4/340)

1. The membranes from Bacillus megaterium KM contained a DD-carboxypeptidase with optimum activity under the following conditions: pH 7; ionic strength, 1.3 M; temperature, 40 degrees C and below 20 degrees C. It did not require any divalent cation, but was inactivated by Cu2+ and Hg2+. It was stimulated by 2-mercaptoethanol and low concentrations of p-chloromercuribenzoate. 2. The membrane preparation also catalyzed a simple transpeptidation reaction using as carboxyl acceptors D-alanine or glycine. 3. The conditions for optimum activity, temperature-inactivation, temperature-dependence of the activity, carboxyl donor specificity, sensitivity to beta-lactam antibiotics, and insensitivity to potential peptide inhibitors of both enzyme activities, was identical. The DD-carboxypeptidase showed inhibition by D-alanine and Ac2-L-Lys-D-Ala. 4. The inhibition by beta-lactam antibiotic was reversible for both enzymic activities and the time-dependence for their recovery was identical. 5. The DD-carboxypeptidase was very sensitive to changes in the configuration and size of the side-chains of the C-terminal dipeptide of the substrate. Amino acid residues at the C-terminus that precluded the peptide from being a DD-carboxypeptidase substrate were not acceptors in the transpeptidation reaction. Dipeptides were not acceptors for the 'model transpeptidase'. 6. It is suggested that both activities are catalysed by the same enzyme molecule, whose physiological role is not the formation of peptide crosslinks during peptidoglycan biosynthesis.  (+info)

Cardiac myosin from pig heart ventricle. Purification and enzymatic properties. (5/340)

A method is described for the preparation of high purity myosin from the left ventricle of pig heart. The purified myosin was free from nucleic acid, actin, tropomyosin, troponin, the 150,000 molecular weight protein and other contaminants. Analyses of subunits in the purified myosin were carried out on 3.5% acrylamide gel with 0.1% SDS. Of the total protein present in myosin, 11.3% was in the light chains; light chain 1 (LC1), 5.9% and light chain 2 (LC2), 5.4%. Urea gel electrophoresis of the purified myosin showed three closely spaced bands corresponding to the 20,000 dalton, the charge-modified 20,000 dalton and the phosphorylated 20,000 dalton components. The properties of the Ca2+-activated and K+-activated ATPases [EC 3.6.1.3] of the purified myosin were also studied. The Km values were 27 and 55 muM and the Vmax values were 0.263 and 0.317 mumole P1/mg/min for the Ca2+-activated and K+-activated ATPases, respectively. The pH-activity profiles and the effects of SH modification were of the skeletal myosin type except that the activities were lower.  (+info)

Pediococcus cerevisiae mutant with altered transport of folates. (6/340)

A Pediococcus cerevisiae mutant that actively accumulated folate (PteGlu), in contrast to the wild-type, was also found to exhibit changes in the pattern of uptake of 5-methyl-tetrahydrofolate (5-CH3-H4PteGlu) and amethopterin. Most of the 5-CH3-H4PteGlue accumulated through a glucose- and temperature-dependent process, and a concentrative uptake was also found in gluocse-starved cells and in cells incubated at OC. About 75% of the accumulated 5-CH3-H4PteGlu exchanged with amethopterin. In contrast to the wild type, the mutant accumulated both diastereoisomers of 5-CH3-H4PteGlue by glucose-dependent and glucose-independent processes. Amethopterin and PteGlue competitively inhibited the uptake in both processes, with an apparent lower affinity of the carrier for PteGlu than for the analogue. p-Chloromercuribenzoate strongly inhibited the uptake (75%). The p-chloromercuribenzoate-nonsusceptible and temperature-independent uptake was also competed by amethopterin. Metabolic poisons like sodium azide, potassium fluoride, iodoacetate, and 2,4-dimitrophenol inhibited the glucose-dependent process. Uptake, in the absence of glucose, was enhanced by sodium azide and potassium fluoride.  (+info)

The involvement of sulphydryl groups in the peptidyl transferase centre of eukaryotic ribosomes. (7/340)

Treatment of mammalian ribosomes with N-ethylmaleimide enhances up to 100% the ribosome efficiency in the "fragment reaction assay" for peptide bond formation by increasing the affinity of the substrate C-A-C-C-A-Leu-Ac for the donor site. This stimulation in peptidyl transferase activity was not observed when yeast ribosomes were treated in a similar manner. Stimulation of the peptidyl transferase activity of mammalian ribosomes was also observed by treatment with either p-chloromercuribenzoic acid or 5,5'-dithiobis-(2-nitrobenzoic acid) or 5,5'-dithiobis-(2-nitropyridine) or the maleimide-derived antibiotic showdomycin. N-Ethylmaleimide treatment also enhances C-A-C-C-A-Leu binding to the acceptor site of the peptidyl transferase centre. However, neither binding of N-Ac-Phe-tRNA in the presence of ethanol, nor binding of Phe-tRNA to the ribosomes is stimulated by N-ethylmaleimide. The antibiotic tenuazionic acid (a selective inhibitor of peptide bond formation by mammalian ribosomes) appears to require for its inhibitory effect the ribosome sulphydryl residues, since its inhibitory action on the fragment reaction is greatly decreased in ribosomes treated with N-ethylmaleimide.  (+info)

Purification and properties of prostaglandin D synthetase from rat brain. (8/340)

The prostaglandin D synthetase system was isolated from rat brain. Prostaglandin endoperoxide synthetase solubilized from a microsomal fraction catalyzed the conversion of arachidonic acid to prostaglandin H2 in the presence of heme and tryptophan. Prostaglandin D synthetase (prostaglandin endoperoxidase-D isomerase) catalyzing the isomerization of prostaglandin H2 to prostaglandin D2 was found predominantly in a cytosol fraction and was purified to apparent homogeneity with a specific activity of 1.7 mumol/min/mg of protein at 24 degrees C. The enzyme also acted upon prostaglandin G2 and produced a compound presumed to be 15-hydroperoxy-prostaglandin D2. Glutathione was not required for the enzyme reaction, but the enzyme was stabilized by thiol compounds including glutathione. The enzyme was inhibited by p-chloromercuribenzoic acid in a reversible manner. The purified enzyme was essentially free of the glutathione S-transferase activity which was found in the cytosol of brain.  (+info)