Expression and cellular localization of the CC chemokines PARC and ELC in human atherosclerotic plaques. (1/347)

Local immune responses are thought to play an important role in the development of atherosclerosis. Histological studies have shown that human atherosclerotic lesions contain T lymphocytes throughout all stages of development, many of which are in an activated state. A number of novel CC chemokines have been described recently, which are potent chemoattractants for lymphocytes: PARC (pulmonary and activation-regulated chemokine), ELC (EBI1-ligand chemokine), LARC (liver and activation-regulated chemokine), and SLC (secondary lymphoid-tissue chemokine). Using reverse transcriptase-polymerase chain reaction and in situ hybridization, we have found gene expression for PARC and ELC but not for LARC or SLC in human atherosclerotic plaques. Immunohistochemical staining of serial plaque sections with specific cell markers revealed highly different expression patterns of PARC and ELC. PARC mRNA was restricted to CD68+ macrophages (n = 14 of 18), whereas ELC mRNA was widely expressed by macrophages and intimal smooth muscle cells (SMC) in nearly all of the lesions examined (n = 12 of 14). ELC mRNA was also found to be expressed in the medial SMC wall of highly calcified plaques (n = 4). Very low levels of ELC mRNA expression could also be detected in normal mammary arteries but no mRNA expression for PARC was detected in these vessels (n = 4). In vitro, ELC mRNA was found to be up-regulated in aortic SMC stimulated with tumor necrosis factor-a and interferon-gamma but not in SMC stimulated with serum. Both PARC and ELC mRNA were expressed by monocyte-derived macrophages but not monocytes. The expression patterns of PARC and ELC mRNA in human atherosclerotic lesions suggest a potential role for these two recently described CC chemokines in attracting T lymphocytes into atherosclerotic lesions.  (+info)

Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. (2/347)

Dendritic cells (DCs) emigrate to regional lymph nodes (LNs) during immune responses via afferent lymphatic channels. Secondary lymphoid-tissue chemokine (SLC), a CC chemokine, is expressed in secondary lymphoid organs and mediates the chemotaxis of lymphocytes and DCs via its receptor, CC chemokine receptor 7 (CCR7). By dual-label fluorescence confocal microscopy, we showed MHC class II-positive cells within SLC-staining lymphatic channels in the mouse dermis. SLC was a potent in vitro chemoattractant for cultured, migratory skin DCs, and it enhanced the emigration of MHC class II-positive DCs from mouse skin explants by an average of 2.5-fold. Mature or cytokine-activated, but not resting, Langerhans cells expressed CCR7 mRNA by RT-PCR. Anti-SLC Abs, but not control or anti-eotaxin Abs, blocked the in vivo migration of 51Cr-labeled, skin-derived DCs from footpads to draining LNs by 50% (n = 9, p < 0. 005). Thus, we provide direct evidence that SLC and CCR7 participate in the emigration of DCs from peripheral tissue to LNs via lymphatics.  (+info)

Cutting edge: species specificity of the CC chemokine 6Ckine signaling through the CXC chemokine receptor CXCR3: human 6Ckine is not a ligand for the human or mouse CXCR3 receptors. (3/347)

The CC chemokine known as 6Ckine (SLC, Exodus-2, or TCA4) has been identified as a ligand for CCR7. Mouse 6Ckine has also been shown to signal through mouse CXCR3 and share some of the activities of IFN-gamma inducible protein 10 and monokine induced by IFN-gamma. Nonetheless, human 6Ckine has not been shown to bind CXCR3 receptor or have angiostatic activity. In this study, we report that human 6Ckine does not induce a calcium flux in either human CXCR3 or mouse CXCR3 transfected cells, although it is an equally potent agonist as mouse 6Ckine and human macrophage inflammatory protein-3beta in human CCR7 transfected cells. Mouse 6Ckine (but not human 6Ckine) is capable of competing with radiolabeled IFN-gamma inducible protein 10 for human CXCR3. In addition, radiolabeled human 6Ckine does not bind to either human CXCR3 or mouse CXCR3. Together these data suggest that human CC chemokine 6Ckine is not a ligand for the human or mouse CXC chemokine receptor CXCR3.  (+info)

The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 beta are potent chemoattractants for in vitro- and in vivo-derived dendritic cells. (4/347)

Dendritic cell migration to secondary lymphoid tissues is critical for Ag presentation to T cells necessary to elicit an immune response. Despite the importance of dendritic cell trafficking in immunity, at present little is understood about the mechanisms that underlie this phenomenon. Using a novel transwell chemotaxis assay system, we demonstrate that the CC chemokine receptor-7 (CCR7) ligands 6Ckine and macrophage inflammatory protein (MIP)-3 beta are selective chemoattractants for MHC class IIhigh B7-2high bone marrow-derived dendritic cells at a potency 1000-fold higher than their known activity on naive T cells. Furthermore, these chemokines stimulate the chemotaxis of freshly isolated lymph node dendritic cells, as well as the egress of skin dendritic cells ex vivo. Because these chemokines are expressed in lymphoid organs and 6Ckine has been localized to high endothelial venules and lymphatic endothelium, we propose that they may play an important role in the homing of dendritic cells to lymphoid tissues.  (+info)

Secondary lymphoid-tissue chemokine (SLC) is chemotactic for mature dendritic cells. (5/347)

Dendritic cells (DC) take up antigen from the periphery and migrate to the lymphoid organs where they present the processed antigens to T cells. The propensity of DC to migrate changes during DC maturation and is probably dependent on alterations in the expression of chemokine receptors on the surface of DC. Secondary lymphoid tissue chemokine (SLC), a recently discovered chemokine for naive T cells, is primarily expressed in secondary lymphoid organs and may be important for colocalizing T cells with other cell types important for T-cell activation. We show here that SLC is a potent chemokine for mature DC but does not act on immature DC. SLC also induced calcium mobilization specifically in mature DC. SLC and Epstein-Barr virus-induced molecule 1 ligand chemokine completely cross-desensitized the calcium response of each other, indicating that they share similar signaling pathways in DC. The finding that SLC is a potent chemokine for DC as well as naive T cells suggests that it plays a role in colocalizing these two cell types leading to cognate T-cell activation.  (+info)

Cutting edge: developmental switches in chemokine responses during T cell maturation. (6/347)

We show that developmental transitions during thymocyte maturation are associated with dramatic changes in chemotactic responses to chemokines. Macrophage-derived chemokine, a chemokine expressed in the thymic medulla, attracts thymocytes only during a brief window of development, between the late cortical and early medullary stages. All medullary phenotypes (CD4 or CD8 single positive) but not immature thymocytes respond to the medullary stroma-expressed (and secondary lymphoid tissue-associated) chemokines secondary lymphoid-tissue chemokine and macrophage inflammatory protein-3beta. The appearance of these responses is associated with the phenotypic stage of cortex to medulla migration and with up-regulation of mRNA for the receptors CCR4 (for macrophage-derived chemokine and thymus and activation-regulated chemokine) and CCR7 (for secondary lymphoid-tissue chemokine and macrophage inflammatory protein-3beta). In contrast, most immature and medullary thymocytes migrate to thymus-expressed chemokine, an ability that is lost only with up-regulation of the peripheral homing receptor L-selectin during the latest stages of thymocyte maturation associated with export to the periphery. Developmental switches in chemokine responses may help regulate critical migratory events during T cell development.  (+info)

SLC/exodus2/6Ckine/TCA4 induces chemotaxis of hematopoietic progenitor cells: differential activity of ligands of CCR7, CXCR3, or CXCR4 in chemotaxis vs. suppression of progenitor proliferation. (7/347)

Chemokines induce chemotaxis of hematopoietic progenitor cells (HPC), and suppress their proliferation. In this study we report that SLC/ Exodus2/6Ckine/TCA4 (hereafter termed SLC) is a chemoattractant for human CD34+ HPC. SLC mainly induces preferential chemotaxis of macrophage progenitors. We examined the chemotactic activity of CXCR3 ligands on CD34+ HPC because it has been reported that SLC is a potential ligand of CXC chemokine receptor, CXCR3, in addition to a CC chemokine receptor, CCR7. It was found that the CXCR3 ligands, MIG and interferon-gamma inducible protein-10 (IP-10), unlike SLC, did not induce chemotaxis of CD34+ HPC. In this regard, CCR7 ligands (SLC and CKbeta-11), but not IP-10 and MIG, induce actin polymerization in CD34+ cells. On the other hand, CCR7 ligands and CXCR3 ligands, but not the CXCR4 ligand SDF-1, showed inhibitory activity for proliferation of myeloid progenitor cells. Our results suggest that SLC is a potential trafficking factor for HPC, and that chemokines that bind CCR7, CXCR4, and CXCR3 have differential biological activities on HPC in terms of suppression and chemotaxis.  (+info)

In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. (8/347)

Migration of antigen-activated CD4 T cells to B cell areas of lymphoid tissues is important for mounting T cell-dependent antibody responses. Here we show that CXC chemokine receptor (CXCR)5, the receptor for B lymphocyte chemoattractant (BLC), is upregulated on antigen-specific CD4 T cells in vivo when animals are immunized under conditions that promote T cell migration to follicles. In situ hybridization of secondary follicles for BLC showed high expression in mantle zones and low expression in germinal centers. When tested directly ex vivo, CXCR5(hi) T cells exhibited a vigorous chemotactic response to BLC. At the same time, the CXCR5(hi) cells showed reduced responsiveness to the T zone chemokines, Epstein-Barr virus-induced molecule 1 (EBI-1) ligand chemokine (ELC) and secondary lymphoid tissue chemokine (SLC). After adoptive transfer, CXCR5(hi) CD4 T cells did not migrate to follicles, indicating that additional changes may occur after immunization that help direct T cells to follicles. To further explore whether T cells could acquire an intrinsic ability to migrate to follicles, CD4(-)CD8(-) double negative (DN) T cells from MRL-lpr mice were studied. These T cells normally accumulate within follicles of MRL-lpr mice. Upon transfer to wild-type recipients, DN T cells migrated to follicle proximal regions in all secondary lymphoid tissues. Taken together, our findings indicate that reprogramming of responsiveness to constitutively expressed lymphoid tissue chemokines plays an important role in T cell migration to the B cell compartment of lymphoid tissues.  (+info)