Loading...
(1/16180) Human topoisomerase I promotes initiation of simian virus 40 DNA replication in vitro.

Addition of purified human topoisomerase I (topo I) to simian virus 40 T antigen-driven in vitro DNA replication reactions performed with topo I-deficient extracts results in a greater than 10-fold stimulation of completed molecules as well as a more than 3-fold enhancement of overall DNA replication. To further characterize this stimulation, we first demonstrate that bovine topo I but not Escherichia coli topo I can also enhance DNA replication. By using several human topo I mutants, we show that a catalytically active form of topo I is required. To delineate whether topo I influences the initiation or the elongation step of replication, we performed delayed pulse, pulse-chase, and delayed pulse-chase experiments. The results illustrate that topo I cannot promote the completion of partially replicated molecules but is needed from the beginning of the reaction to initiate replication. Competitive inhibition experiments with the topo I binding T antigen fragment 1-246T and a catalytically inactive topo I mutant suggest that part of topo I's stimulation of replication is mediated through a direct interaction with T antigen. Collectively, our data indicate that topo I enhances the synthesis of fully replicated DNA molecules by forming essential interactions with T antigen and stimulating initiation.  (+info)

(2/16180) A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila.

Recently, we reported the identification of a 55-kDa polypeptide (p55) from Tetrahymena macronuclei as a catalytic subunit of a transcription-associated histone acetyltransferase (HAT A). Extensive homology between p55 and Gcn5p, a component of the SAGA and ADA transcriptional coactivator complexes in budding yeast, suggests an immediate link between the regulation of chromatin structure and transcriptional output. Here we report the characterization of a second transcription-associated HAT activity from Tetrahymena macronuclei. This novel activity is distinct from complexes containing p55 and putative ciliate SAGA and ADA components and shares several characteristics with NuA4 (for nucleosomal H2A/H4), a 1.8-MDa, Gcn5p-independent HAT complex recently described in yeast. A key feature of both the NuA4 and Tetrahymena activities is their acetylation site specificity for lysines 5, 8, 12, and 16 of H4 and lysines 5 and 9 of H2A in nucleosomal substrates, patterns that are distinct from those of known Gcn5p family members. Moreover, like NuA4, the Tetrahymena activity is capable of activating transcription from nucleosomal templates in vitro in an acetyl coenzyme A-dependent fashion. Unlike NuA4, however, sucrose gradient analyses of the ciliate enzyme, following sequential denaturation and renaturation, estimate the molecular size of the catalytically active subunit to be approximately 80 kDa, consistent with the notion that a single polypeptide or a stable subcomplex is sufficient for this H2A/H4 nucleosomal HAT activity. Together, these data document the importance of this novel HAT activity for transcriptional activation from chromatin templates and suggest that a second catalytic HAT subunit, in addition to p55/Gcn5p, is conserved between yeast and Tetrahymena.  (+info)

(3/16180) Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA.

Pseudouridine (Psi) residues were localized in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (UsnRNAs) by using the chemical mapping method. In contrast to vertebrate UsnRNAs, S. cerevisiae UsnRNAs contain only a few Psi residues, which are located in segments involved in intermolecular RNA-RNA or RNA-protein interactions. At these positions, UsnRNAs are universally modified. When yeast mutants disrupted for one of the several pseudouridine synthase genes (PUS1, PUS2, PUS3, and PUS4) or depleted in rRNA-pseudouridine synthase Cbf5p were tested for UsnRNA Psi content, only the loss of the Pus1p activity was found to affect Psi formation in spliceosomal UsnRNAs. Indeed, Psi44 formation in U2 snRNA was abolished. By using purified Pus1p enzyme and in vitro-produced U2 snRNA, Pus1p is shown here to catalyze Psi44 formation in the S. cerevisiae U2 snRNA. Thus, Pus1p is the first UsnRNA pseudouridine synthase characterized so far which exhibits a dual substrate specificity, acting on both tRNAs and U2 snRNA. As depletion of rRNA-pseudouridine synthase Cbf5p had no effect on UsnRNA Psi content, formation of Psi residues in S. cerevisiae UsnRNAs is not dependent on the Cbf5p-snoRNA guided mechanism.  (+info)

(4/16180) Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation.

Disulfide trapping studies have revealed that the pore-lining (P) segments of voltage-dependent sodium channels undergo sizable motions on a subsecond time scale. Such motions of the pore may be necessary for selective ion translocation. Although traditionally viewed as separable properties, gating and permeation are now known to interact extensively in various classes of channels. We have investigated the interaction of pore motions and voltage-dependent gating in micro1 sodium channels engineered to contain two cysteines within the P segments. Rates of catalyzed internal disulfide formation (kSS) were measured in K1237C+W1531C mutant channels expressed in oocytes. During repetitive voltage-clamp depolarizations, increasing the pulse duration had biphasic effects on the kSS, which first increased to a maximum at 200 msec and then decreased with longer depolarizations. This result suggested that occupancy of an intermediate inactivation state (IM) facilitates pore motions. Consistent with the known antagonism between alkali metals and a component of slow inactivation, kSS varied inversely with external [Na+]o. We examined the converse relationship, namely the effect of pore flexibility on gating, by measuring recovery from inactivation in Y401C+E758C (YC/EC) channels. Under oxidative conditions, recovery from inactivation was slower than in a reduced environment in which the spontaneous YC/EC cross-link is disrupted. The most prominent effects were slowing of a component with intermediate recovery kinetics, with diminution of its relative amplitude. We conclude that occupancy of an intermediate inactivation state facilitates motions of the P segments; conversely, flexibility of the P segments alters an intermediate component of inactivation.  (+info)

(5/16180) Phosphorylation by protein kinase C decreases catalytic activity of avian phospholipase C-beta.

The potential role of protein kinase C (PKC)-promoted phosphorylation has been examined in the G-protein-regulated inositol lipid signalling pathway. Incubation of [32P]Pi-labelled turkey erythrocytes with either the P2Y1 receptor agonist 2-methylthioadenosine triphosphate (2MeSATP) or with PMA resulted in a marked increase in incorporation of 32P into the G-protein-activated phospholipase C PLC-betaT. Purified PLC-betaT also was phosphorylated by PKC in vitro to a stoichiometry (mean+/-S. E.M.) of 1.06+/-0.2 mol of phosphate/mol of PLC-betaT. Phosphorylation by PKC was isoenzyme-specific because, under identical conditions, mammalian PLC-beta2 also was phosphorylated to a stoichiometry near unity, whereas mammalian PLC-beta1 was not phosphorylated by PKC. The effects of PKC-promoted phosphorylation on enzyme activity were assessed by reconstituting purified PLC-betaT with turkey erythrocyte membranes devoid of endogenous PLC activity. Phosphorylation resulted in a decrease in basal activity, AlF4(-)-stimulated activity, and activity stimulated by 2MeSATP plus guanosine 5'-[gamma-thio]triphosphate in the reconstituted membranes. The decreases in enzyme activities were proportional to the extent of PKC-promoted phosphorylation. Catalytic activity assessed by using mixed detergent/phospholipid micelles also was decreased by up to 60% by phosphorylation. The effect of phosphorylation on Gqalpha-stimulated PLC-betaT in reconstitution experiments with purified proteins was not greater than that observed on basal activity alone. Taken together, these results illustrate that PKC phosphorylates PLC-betaT in vivo and to a physiologically relevant stoichiometry in vitro. Phosphorylation is accompanied by a concomitant loss of enzyme activity, reflected as a decrease in overall catalytic activity rather than as a specific modification of G-protein-regulated activity.  (+info)

(6/16180) Regulation and function of family 1 and family 2 UDP-glucuronosyltransferase genes (UGT1A, UGT2B) in human oesophagus.

Human UDP-glucuronosyltransferases (UGTs) are expressed in a tissue-specific fashion in hepatic and extrahepatic tissues [Strassburg, Manns and Tukey (1998) J. Biol. Chem. 273, 8719-8726]. Previous work suggests that these enzymes play a protective role in chemical carcinogenesis [Strassburg, Manns and Tukey (1997) Cancer Res. 57, 2979-2985]. In this study, UGT1 and UGT2 gene expression was investigated in human oesophageal epithelium and squamous-cell carcinoma in addition to the characterization of individual UGT isoforms using recombinant protein. UGT mRNA expression was characterized by duplex reverse transcriptase-PCR analysis and revealed the expression of UGT1A7, UGT1A8, UGT1A9 and UGT1A10 mRNAs. UGT1A1, UGT1A3, UGT1A4, UGT1A5 and UGT1A6 transcripts were not detected. UGT2 expression included UGT2B7, UGT2B10 and UGT2B15, but UGT2B4 mRNA was absent. UGT2 mRNA was present at significantly lower levels than UGT1 transcripts. This observation was in agreement with the analysis of catalytic activities in oesophageal microsomal protein, which was characterized by high glucuronidation rates for phenolic xenobiotics, all of which are classical UGT1 substrates. Whereas UGT1A9 was not regulated, differential regulation of UGT1A7 and UGT1A10 mRNA was observed between normal oesophageal epithelium and squamous-cell carcinoma. Expression and analysis in vitro of recombinant UGT1A7, UGT1A9, UGT1A10, UGT2B7 and UGT2B15 demonstrated that UGT1A7, UGT1A9 and UGT1A10 catalysed the glucuronidation of 7-hydroxybenzo(alpha)pyrene, as well as other environmental carcinogens, such as 2-hydroxyamino-1-methyl-6-phenylimidazo-(4, 5-beta)-pyridine. Although UGT1A9 was not regulated in the carcinoma tissue, the five-fold reduction in 7-hydroxybenzo(alpha)pyrene glucuronidation could be attributed to regulation of UGT1A7 and UGT1A10. These data elucidate an individual regulation of human UGT1A and UGT2B genes in human oesophagus and provide evidence for specific catalytic activities of individual human UGT isoforms towards environmental carcinogens that have been implicated in cellular carcinogenesis.  (+info)

(7/16180) Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism.

Conversion of serotonin to N-acetylserotonin, the precursor of the circadian neurohormone melatonin, is catalyzed by serotonin N-acetyltransferase (AANAT) in a reaction requiring acetyl coenzyme A (AcCoA). AANAT is a globular protein consisting of an eight-stranded beta sheet flanked by five alpha helices; a conserved motif in the center of the beta sheet forms the cofactor binding site. Three polypeptide loops converge above the AcCoA binding site, creating a hydrophobic funnel leading toward the cofactor and serotonin binding sites in the protein interior. Two conserved histidines not found in other NATs are located at the bottom of the funnel in the active site, suggesting a catalytic mechanism for acetylation involving imidazole groups acting as general acid/base catalysts.  (+info)

(8/16180) Histone octamer transfer by a chromatin-remodeling complex.

RSC, an abundant, essential chromatin-remodeling complex related to SWI/SNF complex, catalyzes the transfer of a histone octamer from a nucleosome core particle to naked DNA. The newly formed octamer-DNA complex is identical with a nucleosome in all respects. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. The mechanism may entail formation of a duplex displacement loop on the nucleosome, facilitating the entry of exogeneous DNA and the release of the endogenous molecule.  (+info)