Activation of c-Abl tyrosine kinase requires caspase activation and is not involved in JNK/SAPK activation during apoptosis of human monocytic leukemia U937 cells. (1/2230)

Genotoxic stress triggers the activation of several sensor molecules, such as p53, JNK1/SAPK and c-Abl, and occasionally promotes the cells to apoptosis. We previously reported that JNK1/SAPK regulates genotoxic stress-induced apoptosis in p53-negative U937 cells by activating caspases. c-Abl is expected to act upstream of JNK1/SAPK activation upon treatment with genotoxic stressors, but its involvement in apoptosis development is still unclear. We herein investigated the kinase activities of c-Abl and JNK1/SAPK during apoptosis elicited by genotoxic anticancer drugs and tumor necrosis factor (TNF) in U937 cells and their apoptosis-resistant variant UK711 cells. We found that the activation of JNK1/SAPK and c-Abl correlated well with apoptosis development in these cell lines. Unexpectedly, however, the JNK1/SAPK activation preceded the c-Abl activation. Moreover, the caspase inhibitor Z-Asp suppressed c-Abl activation and the onset of apoptosis but not the JNK1/SAPK activation. Interestingly, c-Abl tyrosine kinase inhibition by CGP 57148 reduced apoptosis without interfering with JNK1/SAPK activation. These results indicate that c-Abl acts not upstream of JNK1/ SAPK but downstream of caspases during the development of p53-independent apoptosis and is possibly involved in accelerating execution of the cell death pathway.  (+info)

Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. (2/2230)

We investigated mechanisms of cell death during hypoxia/reoxygenation of cultured kidney cells. During glucose-free hypoxia, cell ATP levels declined steeply resulting in the translocation of Bax from cytosol to mitochondria. Concurrently, there was cytochrome c release and caspase activation. Cells that leaked cytochrome c underwent apoptosis after reoxygenation. ATP depletion induced by a mitochondrial uncoupler resulted in similar alterations even in the presence of oxygen. Moreover, inclusion of glucose during hypoxia prevented protein translocations and reoxygenation injury by maintaining intracellular ATP. Thus, ATP depletion, rather than hypoxia per se, was the cause of protein translocations. Overexpression of Bcl-2 prevented cytochrome c release and reoxygenation injury without ameliorating ATP depletion or Bax translocation. On the other hand, caspase inhibitors did not prevent protein translocations, but inhibited apoptosis during reoxygenation. Nevertheless, they could not confer long-term viability, since mitochondria had been damaged. Omission of glucose during reoxygenation resulted in continued failure of ATP production, and cell death with necrotic morphology. In contrast, cells expressing Bcl-2 had functional mitochondria and remained viable during reoxygenation even without glucose. Therefore, Bax translocation during hypoxia is a molecular trigger for cell death during reoxygenation. If ATP is available during reoxygenation, apoptosis develops; otherwise, death occurs by necrosis. By preserving mitochondrial integrity, BCL-2 prevents both forms of cell death and ensures cell viability.  (+info)

Phosphatidylinositol 3-kinase and protein kinase C are required for the inhibition of caspase activity by epidermal growth factor. (3/2230)

The mechanism by which growth factors exert an anti-apoptotic function on many cell types is not well understood. This issue is addressed in relation to epidermal growth factor (EGF) which inhibits apoptosis induced by staurosporine or wortmannin in an epithelial tumour cell line (CNE-2). The presence of EGF substantially reduced the in vitro Ac-DEVD-AMC hydrolytic activity and almost completely suppressed the intracellular cleavage of poly(ADP-ribose) polymerase in staurosporine- or wortmannin-treated cells. Staurosporine but not wortmannin caused the intracellular proteolytic processing of pro-caspase-3 and this event was transiently inhibited by EGF. Staurosporine-induced apoptosis was not inhibited by EGF in the presence of wortmannin or LY294002. Similarly, EGF failed to inhibit wortmannin-induced apoptosis in the presence of staurosporine, chelerythrine chloride or Go6850. These results suggest that phosphatidylinositol 3-kinase and protein kinase C play a role in the survival function of EGF but the reduction of cellular caspase activity cannot be satisfactorily explained by a lack of pro-caspase-3 activation.  (+info)

Altered cytochrome c display precedes apoptotic cell death in Drosophila. (4/2230)

Drosophila affords a genetically well-defined system to study apoptosis in vivo. It offers a powerful extension to in vitro models that have implicated a requirement for cytochrome c in caspase activation and apoptosis. We found that an overt alteration in cytochrome c anticipates programmed cell death (PCD) in Drosophila tissues, occurring at a time that considerably precedes other known indicators of apoptosis. The altered configuration is manifested by display of an otherwise hidden epitope and occurs without release of the protein into the cytosol. Conditional expression of the Drosophila death activators, reaper or grim, provoked apoptogenic cytochrome c display and, surprisingly, caspase activity was necessary and sufficient to induce this alteration. In cell-free studies, cytosolic caspase activation was triggered by mitochondria from apoptotic cells but identical preparations from healthy cells were inactive. Our observations provide compelling validation of an early role for altered cytochrome c in PCD and suggest propagation of apoptotic physiology through reciprocal, feed-forward amplification involving cytochrome c and caspases.  (+info)

Rubella virus-induced apoptosis varies among cell lines and is modulated by Bcl-XL and caspase inhibitors. (5/2230)

Rubella virus (RV) causes multisystem birth defects in the fetuses of infected women. To investigate the cellular basis of this pathology, we examined the cytopathic effect of RV in three permissive cell lines: Vero 76, RK13, and BHK21. Electron microscopy and the TUNEL assay showed that the cytopathic effect resulted from RV-induced programmed cell death (apoptosis) in all three cell lines, but the extent of apoptosis varied among these cells. At 48 h postinfection, the RK13 cell line showed the greatest number of apoptotic cells, the Vero 76 cell line was approximately 3-fold less, and BHK21 had very few. An increased multiplicity of infection and longer time postinfection were required for the BHK21 cell line to reach the level of apoptotic cells in Vero 76 at 48 h. Purified RV induced apoptosis in a dose-dependent fashion, but not UV-inactivated RV or virus-depleted culture supernatant. Specific inhibitors of the apoptosis-specific proteases caspases reduced RV-induced apoptosis and led to higher levels of RV components in infected cells. To address the role of regulatory proteins in RV-induced apoptosis, the antiapoptotic gene Bcl-2 or Bcl-XL was transfected into RK13 cells. Although a high level of Bcl-2 family proteins was expressed, no protection was observed from apoptosis induced by RV, Sindbis virus, or staurosporine in RK13 cells. In BHK21 cells, however, increased expression of Bcl-XL protected cells from apoptosis. The observed variability in apoptotic response to RV of these cell lines demonstrates that programmed cell death is dependent on the unique properties of each cell and may be indicative of how selective organ damage occurs in a congenital rubella syndrome fetus.  (+info)

Merbarone, a catalytic inhibitor of DNA topoisomerase II, induces apoptosis in CEM cells through activation of ICE/CED-3-like protease. (6/2230)

Merbarone (5-[N-phenyl carboxamido]-2-thiobarbituric acid) is an anticancer drug that inhibits the catalytic activity of DNA topoisomerase II (topo II) without damaging DNA or stabilizing DNA-topo II cleavable complexes. Although the cytotoxicity of the complex-stabilizing DNA-topo II inhibitors such as VP-16 (etoposide) has been partially elucidated, the cytotoxicity of merbarone is poorly understood. Here, we report that merbarone induces programmed cell death or apoptosis in human leukemic CEM cells, characterized by internucleosomal DNA cleavage and nuclear condensation. Treatment of CEM cells with apoptosis-inducing concentrations of merbarone caused activation of c-Jun NH2-terminal kinase/stress-activated protein kinase, c-jun gene induction, activation of caspase-3/CPP32-like protease but not caspase-1, and the proteolytic cleavage of poly(ADP-ribose) polymerase. Treatment of CEM cells with a potent inhibitor of caspases, Z-Asp-2. 6-dichlorobenzoyloxymethyl-ketone, inhibited merbarone-induced caspase-3/CPP32-like activity and apoptosis in a dose-dependent manner. These results indicate that the catalytic inhibition of topo II by merbarone leads to apoptotic cell death through a caspase-3-like protease-dependent mechanism. These results further suggest that c-Jun and c-Jun NH2-terminal kinase/stress-activated protein kinase signaling may be involved in the cytotoxicity of merbarone.  (+info)

Inhibitory sites in enzymes: zinc removal and reactivation by thionein. (7/2230)

Thionein (T) has not been isolated previously from biological material. However, it is generated transiently in situ by removal of zinc from metallothionein under oxidoreductive conditions, particularly in the presence of selenium compounds. T very rapidly activates a group of enzymes in which zinc is bound at an inhibitory site. The reaction is selective, as is apparent from the fact that T does not remove zinc from the catalytic sites of zinc metalloenzymes. T instantaneously reverses the zinc inhibition with a stoichiometry commensurate with its known capacity to bind seven zinc atoms in the form of clusters in metallothionein. The zinc inhibition is much more pronounced than was previously reported, with dissociation constants in the low nanomolar range. Thus, T is an effective, endogenous chelating agent, suggesting the existence of a hitherto unknown and unrecognized biological regulatory system. T removes the metal from an inhibitory zinc-specific enzymatic site with a resultant marked increase of activity. The potential significance of this system is supported by the demonstration of its operations in enzymes involved in glycolysis and signal transduction.  (+info)

Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. (8/2230)

In cultured human endothelial cells, physiological levels of NO prevent apoptosis and interfere with the activation of the caspase cascade. In vitro data have demonstrated that NO inhibits the activity of caspase-3 by S-nitrosation of the enzyme. Here we present evidence for the in vivo occurrence and functional relevance of this novel antiapoptotic mechanism. To demonstrate that the cysteine residue Cys-163 of caspase-3 is S-nitrosated, cells were transfected with the Myc-tagged p17 subunit of caspase-3. After incubation of the transfected cells with different NO donors, Myc-tagged p17 was immunoprecipitated with anti-Myc antibody. S-Nitrosothiol was detected in the immunoprecipitate by electron spin resonance spectroscopy after liberation and spin trapping of NO by N-methyl-D-glucamine-dithiocarbamate-iron complex. Transfection of cells with a p17 mutant, where the essential Cys-163 was mutated into alanine, completely prevented S-nitrosation of the enzyme. As a functional correlate, in human umbilical vein endothelial cells the NO donors sodium nitroprusside or PAPA NONOate (50 microM) significantly reduced the increase in caspase-3-like activity induced by overexpressing caspase-3 by 75 and 70%, respectively. When human umbilical vein endothelial cells were cotransfected with beta-galactosidase, morphological analysis of stained cells revealed that cell death induction by overexpression of caspase-3 was completely suppressed in the presence of sodium nitroprusside, PAPA NONOate, or S-nitroso-L-cysteine (50 microM). Thus, NO supplied by exogenous NO donors serves in vivo as an antiapoptotic regulator of caspase activity via S-nitrosation of the Cys-163 residue of caspase-3.  (+info)