Enhancement of cell adhesion and spreading by a cartilage-specific noncollagenous protein, cartilage matrix protein (CMP/Matrilin-1), via integrin alpha1beta1. (1/201)

Cartilage matrix protein (CMP; also known as matrilin-1), one of the major noncollagenous proteins in most cartilages, binds to aggrecan and type II collagen. We examined the effect of CMP on the adhesion of chondrocytes and fibroblasts using CMP-coated dishes. The CMP coating at 10-20 micrograms/ml enhanced the adhesion and spreading of rabbit growth plate, resting and articular chondrocytes, and fibroblasts and human epiphyseal chondrocytes and MRC5 fibroblasts. The effect of CMP on the spreading of chondrocytes was synergistically increased by native, but not heated, type II collagen (gelatin). The monoclonal antibody to integrin alpha1 or beta1 abolished CMP-induced cell adhesion and spreading, whereas the antibody to integrin alpha2, alpha3, alpha5, beta2, alpha5beta1, or alphaVbeta5 had little effect on cell adhesion or spreading. The antibody to integrin alpha1, but not to other subunits, coprecipitated 125I-CMP that was added to MRC5 cell lysates, indicating the association of CMP with the integrin alpha1 subunit. Unlabeled CMP competed for the binding to integrin alpha1 with 125I-CMP. These findings suggest that CMP is a potent adhesion factor for chondrocytes, particularly in the presence of type II collagen, and that integrin alpha1beta1 is involved in CMP-mediated cell adhesion and spreading. Since CMP is expressed almost exclusively in cartilage, this adhesion factor, unlike fibronectin or laminin, may play a special role in the development and remodeling of cartilage.  (+info)

Production of cartilage oligomeric matrix protein (COMP) by cultured human dermal and synovial fibroblasts. (2/201)

OBJECTIVE: Cartilage oligomeric matrix protein (COMP) is a large disulfide-linked pentameric protein. Each of its five subunits is approximately 100,000 Da in molecular weight. COMP was originally identified and characterized in cartilage and it has been considered a marker of cartilage metabolism because it is currently thought not to be present in other joint tissues, except for tendon. To confirm the tissue specificity of COMP expression we examined cultured human dermal fibroblasts, human foreskin fibroblasts, and normal human synovial cells for the synthesis of COMP in culture. METHOD: Normal synovial cells and normal human dermal foreskin fibroblasts were isolated from the corresponding tissues by sequential enzymatic digestions and cultured in media containing 10% fetal bovine serum until confluent. During the final 24 h of culture, the cells were labeled with 35S-methionine and 35S-cysteine in serum- and cysteine/methionine-free medium. The newly synthesized COMP molecules were immunoprecipitated from the culture media with a COMP-specific polyclonal antiserum, or with monoclonal antibodies or affinity-purified COMP antibodies. The immunoprecipitated COMP was analyzed by electrophoresis in 5.5% polyacrylamide gels. For other experiments, synovial cells cultured from the synovium of patients with rheumatoid arthritis (RA) and osteoarthritis (OA) were similarly examined. RESULTS: A comparison of the amounts of COMP produced by each cell type (corrected for the DNA content) revealed that synovial cells produced > or = 9 times more COMP than chondrocytes or dermal fibroblasts. COMP could be easily detected by immunoprecipitation in all cell types. Electrophoretic analysis revealed a distinct band with an apparent MW of 115-120 kDa in samples from each of the three cell types, regardless of the antibody used. COMP expression in cultures of synoviocytes derived from OA and RA patients showed that OA and RA synovial cells produced similar amounts of monomeric COMP of identical size to those COMP monomers produced by normal synovial cells. The addition of TGF-beta to these cultures resulted in an increase in COMP production in normal, OA and RA synovial cells (45, 116 and 115% respectively). CONCLUSION: These studies demonstrate that substantial amounts of COMP are produced by several mesenchymal cells including synoviocytes and dermal fibroblasts. These findings raise important concerns regarding the utility of measurements of COMP levels in serum or in synovial fluid as markers of articular cartilage degradation because of the likelihood that a substantial proportion of COMP or COMP fragments present in serum or synovial fluid may be produced by cells other than articular chondrocytes.  (+info)

Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: the Johnston County Osteoarthritis Project. (3/201)

OBJECTIVE: To characterize serum cartilage oligomeric matrix protein (COMP) levels by age and gender for a radiographically defined population free of hip and knee osteoarthritis (OA), and to examine the potential utility of COMP as a diagnostic biomarker for knee OA. METHODS: Serum samples and knee and hip radiographs were obtained at a baseline evaluation as part of the Johnston County Osteoarthritis Project, a population-based study of OA in rural North Carolina. A total of 291 Caucasian participants were randomly selected for COMP analysis, 143 patients with radiographic knee OA (Kellgren/Lawrence [K/L] grade > or = 2) and 148 controls with neither hip nor knee OA (K/L grade 0), evenly distributed by age and gender. COMP was quantified by competitive enzyme-linked immunosorbent assay with monoclonal antibody 17-C10. The natural log-transformed COMP data were analyzed using general linear models. RESULTS: Serum COMP levels were significantly elevated (P = 0.0001) in the age > or = 65 group (mean +/- SD 1,302.1 +/- 496.7 ng/ml) versus the age 45-54 and age 55-64 groups (1,058.1 +/- 432.4 and 1,038.6 +/- 313.3, respectively). Serum COMP levels of the OA group were significantly higher than those of the control group (1,208.57 +/- 487.47 ng/ml versus 1,061.83 +/- 370.58 ng/ml; P = 0.0093). Serum COMP levels also increased significantly with knee OA K/L grade (P = 0.0047), knee OA laterality (P = 0.0043), and number of knee and hip joints involved (P = 0.0001). There was no significant difference in serum COMP levels by gender or obesity. CONCLUSION: We demonstrate that in a population-based sample, serum COMP levels can distinguish an OA-affected subgroup from an unaffected subgroup and can reflect disease severity and multiple joint involvement in OA.  (+info)

A cartilage oligomeric matrix protein mutation associated with pseudoachondroplasia changes the structural and functional properties of the type 3 domain. (4/201)

Cartilage oligomeric matrix protein (COMP) is a member of the thrombospondin family of extracellular matrix glycoproteins. All members of the family contain a highly conserved region of thrombospondin type 3 sequence repeats that bind calcium. A mutation in COMP previously identified in a patient with pseudoachondroplasia resulted in abnormal sequestration of COMP in distinctive rER vesicles. The mutation, Asp-446 --> Asn, is located in the type 3 repeats of the molecule. This region was expressed in a mammalian culture with and without the mutation to study the structural or functional properties associated with the mutation. The biophysical parameters of the mutant peptide were compared with those of the wild type and revealed the following difference: secondary structural analysis by circular dichroism showed more alpha-helix content in the wild-type peptides. The calcium binding properties of the two peptides were significantly different; there were 17 calcium ions bound/wild-type COMP3 peptide compared with 8/mutant peptide. In addition, wild-type COMP3 had a higher affinity for calcium and bound calcium more cooperatively. Calcium bound by the wild-type peptide was reflected in a structural change as indicted by velocity sedimentation. Thus, the effect of the COMP mutation appears to profoundly alter the calcium binding properties and may account for the difference observed in the structure of the type 3 domain. Furthermore, the highly cooperative binding of calcium to COMP3 suggests that these type 3 sequence repeats form a single protein domain, the thrombospondin type 3 domain.  (+info)

Autoreactivity against matrilin-1 in a patient with relapsing polychondritis. (5/201)

Relapsing polychondritis (RP) is a rare inflammatory disease of cartilage. Chondritis of the auricular, nasal, and tracheal cartilages predominates in this disease, suggesting a response to a tissue-specific antigen. One potential antigen is matrilin-1, a cartilage matrix protein found uniquely in the tracheal, auricular, and nasal cartilage of adults. We describe herein a patient with RP who had both a humoral and a cellular immune response directed toward the cartilage matrix protein matrilin-1.  (+info)

Molecular cloning and expression patterns of mouse cartilage oligomeric matrix protein gene. (6/201)

OBJECTIVE: To develop transgenic mice harboring mutations in the COMP gene as animal models for pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED), autosomal dominant disorders characterized by early onset osteoarthritis and epiphyseal abnormalities. As a first step in generating a mouse model for COMP mutations, we have cloned the cDNA of mouse COMP and examined its tissue expression pattern. DESIGN: Total mRNA was isolated from the skeletal tissues of newborn C57BL/6j mice and used as a template for oligo(dT) first-strand cDNA synthesis. The cDNA was used for PCR amplification of COMP using three oligonucleotide primer pairs designed from the published rat COMP cDNA sequence. Nested PCR was used to complete the sequence between the amplified fragments. The entire cDNA was sequenced and the expression pattern of the corresponding transcripts examined by Northern hybridizations. RESULTS: A full-length COMP cDNA was isolated. Analysis showed that the entire translated region of the mouse COMP gene is 2268 bp and the derived amino acid sequence shows 90% homology to human COMP. Of eight adult mouse non-cartilage tissues tested, COMP expression was detected only in testis.  (+info)

Pseudoachondroplastic dysplasia: an Iowa review from human to mouse. (7/201)

Lamellar inclusions of the rough endoplasmic reticulum in growth plate chondrocytes, first identified (1972) in the Department of Orthopaedic Surgery, University of Iowa, has become the cytochemical hallmark for the pseudoachondroplastic dysplasia (PSACH) phenotype, linking an endoplasmic reticulum storage disorder with the osteochondrodysplasia. Since this original observation, great advances have been made, leading to the molecular understanding of this altered longitudinal bone growth anomaly. A PSACH canine model suggested that abatement of cumulative vertical growth of growth plate chondrocytes seen in PSACH results from (1) altered extracellular matrix constraints for horizontal growth and (2) uncoupling of endochondral and perichondral growth that causes metaphyseal flaring. PSACH, an autosomal dominant disease, is linked to mutation of the cartilage oligomeric matrix protein (COMP) gene. Amino acid substitutions, deletions, or additions is proposed to alter COMP structure that cause its retention in the rough endoplasmic reticulum of growth plate chondrocytes, leading to (1) compositional and structural change of the extracellular matrix, and (2) altered cellular proliferation and volume expansion. Normal growth and development occurs in COMP gene knockout mice that do not synthesis COMP, demonstrating that a mutant COMP, not absence of COMP, is required for the PSACH phenotype. The mechanism by which mutant COMP induces a PSACH phenotype remains to be elucidated. At the University of Iowa a cell culture system has been developed whereby mutant COMP transgenes are introduced into chondrocytes and the expressed product COMP is retained in the endoplasmic reticulum. This readily manipulated system makes it possible to decipher systematically the system's cellular secretory processing pathway, in order to clarify the mechanism(s) by which the mutant COMP is retained within the endoplasmic reticulum. Concurrent with this is the development of transgenic mice expressing the mutant COMP used in the cell culture system. This will make it possible to establish that expression of a human PSACH-linked mutant COMP will produce a PSACH phenotype. A PSACH animal model will provide a means to characterize the mechanism of altered longitudinal bone growth and to test gene therapy approaches for correcting the anomaly.  (+info)

Cartilage oligomeric matrix protein is a calcium-binding protein, and a mutation in its type 3 repeats causes conformational changes. (8/201)

Mutations in residues in the type 3 calcium-binding repeats and COOH-terminal globular region of cartilage oligomeric matrix protein (COMP) lead to two skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia. It has been hypothesized that these mutations cause COMP to misfold and to be retained in the endoplasmic reticulum. However, this hypothesis is not supported by previous reports that COMP, when purified in the presence of EDTA, shows no obvious difference in electron microscopic appearance in the presence or absence of calcium ions. Since this discrepancy may be due to the removal of calcium during purification, we have expressed wild-type COMP and the most common mutant form found in pseudoachondroplasia, MUT3, using a mammalian expression system and have purified both proteins in the presence of calcium. Both proteins are expressed as pentamers. Direct calcium binding experiments demonstrate that wild-type COMP, when purified in the presence of calcium, is a calcium-binding protein. Rotary shadowing electron microscopy and limited trypsin digestion at various calcium concentrations show that there are conformational changes associated with calcium binding to COMP. Whereas COMP exists in a more compact conformation in the presence of calcium, it shows a more extended conformation when calcium is removed. MUT3, with a single aspartic acid deletion in the type 3 repeats, binds less calcium and presents an intermediate conformation between the calcium-replete and calcium-depleted forms of COMP. In conclusion, we show that a single mutation in the type 3 repeats of COMP causes the mutant protein to misfold. Our data demonstrate the importance of calcium binding to the structure of COMP and provide a plausible explanation for the observation that mutations in the type 3 repeats and COOH-terminal globular region lead to pseudoachondroplasia.  (+info)