Presynaptic action of adenosine on a 4-aminopyridine-sensitive current in the rat carotid body. (1/641)

1. Plasma adenosine concentration increases during hypoxia to a level that excites carotid body chemoreceptors by an undetermined mechanism. We have examined this further by determining the electrophysiological responses to exogenous adenosine of sinus nerve chemoafferents in vitro and of whole-cell currents in isolated type I cells. 2. Steady-state, single-fibre chemoafferent discharge was increased approximately 5-fold above basal levels by 100 microM adenosine. This adenosine-stimulated discharge was reversibly and increasingly reduced by methoxyverapamil (D600, 100 microM), by application of nickel chloride (Ni2+, 2 mM) and by removal of extracellular Ca2+. These effects strongly suggest a presynaptic, excitatory action of adenosine on type I cells of the carotid body. 3. Adenosine decreased whole-cell outward currents at membrane potentials above -40 mV in isolated type I cells recorded during superfusion with bicarbonate-buffered saline solution at 34-36 C. This effect was reversible and concentration dependent with a maximal effect at 10 microM. 4. The degree of current inhibition induced by 10 microM adenosine was voltage independent (45.39 +/- 2. 55 % (mean +/- s.e.m.) between -40 and +30 mV) and largely ( approximately 75 %), but not entirely, Ca2+ independent. 4-Aminopyridine (4-AP, 5 mM) decreased the amplitude of the control outward current by 80.60 +/- 3.67 % and abolished the effect of adenosine. 5. Adenosine was without effect upon currents near the resting membrane potential of approximately -55 mV and did not induce depolarization in current-clamp experiments. 6. We conclude that adenosine acts to inhibit a 4-AP-sensitive current in isolated type I cells of the rat carotid body and suggest that this mechanism contributes to the chemoexcitatory effect of adenosine in the whole carotid body.  (+info)

Trigeminal and carotid body inputs controlling vascular resistance in muscle during post-contraction hyperaemia in cats. (2/641)

1. In anaesthetized cats, the effects of stimulation of the receptors in the nasal mucosa and carotid body chemoreceptors on vascular resistance in hindlimb skeletal muscle were studied to see whether the responses were the same in active as in resting muscle. The measurements of vascular resistance were taken, first, in resting muscle, and second, in the immediate post-contraction hyperaemic phase that followed a 30 s period of isometric contractions. 2. Stimulation of the receptors in the nasal mucosa caused reflex apnoea and vasoconstriction in muscle. The latter response was attenuated when the test was repeated during post-contraction hyperaemia. 3. Stimulations of the carotid bodies were made during a period of apnoea evoked reflexly by electrical stimulation of both superior laryngeal nerves. This apnoea prevented any effects of changes in respiration on the carotid body reflex vascular responses. Stimulation of the carotid bodies evoked hindlimb muscle vasoconstriction. In the post-contraction hyperaemic period, the response was reduced or abolished. A similar attenuation of the reflex vasoconstrictor responses occurred in decentralized muscles stimulated through their motor roots in the cauda equina. 4. Evidence is presented that the attenuation of the vasoconstrictor responses evoked by the two reflexes is a phenomenon localized to the contracting muscles themselves resulting from an interaction between sympathetic neuronal activity and the local production of metabolites. 5. The results are discussed in relation to the metabolic needs of tissues in relation to asphyxial defence mechanisms such as occur in the diving response.  (+info)

BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. (3/641)

Brain-derived neurotrophic factor (BDNF) supports survival of 50% of visceral afferent neurons in the nodose/petrosal sensory ganglion complex (NPG; Ernfors et al., 1994a; Jones et al., 1994; Conover et al., 1995; Liu et al., 1995; Erickson et al., 1996), including arterial chemoafferents that innervate the carotid body and are required for development of normal breathing (Erickson et al., 1996). However, the relationship between BDNF dependence of visceral afferents and the location and timing of BDNF expression in visceral tissues is unknown. The present study demonstrates that BDNF mRNA and protein are transiently expressed in NPG targets in the fetal cardiac outflow tract, including baroreceptor regions in the aortic arch, carotid sinus, and right subclavian artery, as well as in the carotid body. The period of BDNF expression corresponds to the onset of sensory innervation and to the time at which fetal NPG neurons are BDNF-dependent in vitro. Moreover, baroreceptor innervation is absent in newborn mice lacking BDNF. In addition to vascular targets, vascular afferents themselves express high levels of BDNF, both during and after the time they are BDNF-dependent. However, endogenous BDNF supports survival of fetal NPG neurons in vitro only under depolarizing conditions. Together, these data indicate two roles for BDNF during vascular afferent pathway development; initially, as a target-derived survival factor, and subsequently, as a signaling molecule produced by the afferents themselves. Furthermore, the fact that BDNF is required for survival of functionally distinct populations of vascular afferents demonstrates that trophic requirements of NPG neurons are not modality-specific but may instead be associated with innervation of particular organ systems.  (+info)

NADPH oxidase inhibition does not interfere with low PO2 transduction in rat and rabbit CB chemoreceptor cells. (4/641)

The aim of the present work was to elucidate the role of NADPH oxidase in hypoxia sensing and transduction in the carotid body (CB) chemoreceptor cells. We have studied the effects of several inhibitors of NADPH oxidase on the normoxic and hypoxia-induced release of [3H]catecholamines (CA) in an in vitro preparation of intact CB of the rat and rabbit whose CA deposits have been labeled by prior incubation with the natural precursor [3H]tyrosine. It was found that diphenyleneiodonium (DPI; 0.2-25 microM), an inhibitor of NADPH oxidase, caused a dose-dependent release of [3H]CA from normoxic CB chemoreceptor cells. Contrary to hypoxia, DPI-evoked release was only partially Ca2+ dependent. Concentrations of DPI reported to produce full inhibition of NADPH oxidase in the rat CB did not prevent the hypoxic release response in the rat and rabbit CB chemoreceptor cells, as stimulation with hypoxia in the presence of DPI elicited a response equaling the sum of that produced by DPI and hypoxia applied separately. Neopterin (3-300 microM) and phenylarsine oxide (0.5-2 microM), other inhibitors of NADPH oxidase, did not promote release of [3H]CA in normoxic conditions or affect the response elicited by hypoxia. On the basis of effects of neopterin and phenylarsine oxide, it is concluded that NADPH oxidase does not appear to play a role in oxygen sensing or transduction in the rat and rabbit CB chemoreceptor cells in vitro and, in the context of the present study, that DPI effects are not related to NADPH oxidase inhibition.  (+info)

Enhanced activity of carotid body chemoreceptors in rabbits with heart failure: role of nitric oxide. (5/641)

An enhanced peripheral chemoreflex has been documented in patients with chronic heart failure (CHF). This study aimed to examine the characteristics of carotid body (CB) chemoreceptors in response to isocapnic hypoxia in a rabbit model of pacing-induced CHF and to evaluate the possible role that nitric oxide (NO) plays in the altered characteristics. The chemosensitive characteristics of the CB were evaluated by recording single-unit activity from the carotid sinus nerve in both an intact and a vascularly isolated preparation. It was found that the baseline discharge under normoxia (intact preparation: arterial PO2 90-95 Torr; isolated preparation: PO2 100-110 Torr) and the chemosensitivity in response to graded hypoxia (PO2 40-70 Torr) were enhanced in CHF vs. sham rabbits. These alterations were independent of the CB preparations (intact vs. isolated). NO synthase inhibition by Nomega-nitro-L-arginine increased the baseline discharge and the chemosensitivity in the intact preparation, whereas L-arginine (10(-5) M) inhibited the baseline discharge and the chemosensitivity in the isolated preparation in sham but not in CHF rabbits. S-nitroso-N-acetylpenicillamine, an NO donor, inhibited the baseline discharge and the chemosensitivity in both CB preparations in CHF rabbits but only in the isolated preparation in sham rabbits. The amount of NO produced in vitro by the CB under normoxia was less in CHF rabbits than in sham rabbits (P < 0.05). NO synthase-positive varicosities of nerve fibers within the CB were less in CHF rabbits than in sham rabbits (P < 0.05). These data indicate that an enhanced input from CB occurs in the rabbit model of pacing-induced CHF and that an impairment of NO production may contribute to this alteration.  (+info)

Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. (6/641)

Previous studies have shown that nitric oxide (NO) inhibits carotid body sensory activity. To begin to understand the cellular mechanisms associated with the actions of NO in the carotid body, we monitored the effects of NO donors on the macroscopic Ca2+ current in glomus cells isolated from rabbit carotid bodies. Experiments were performed on freshly dissociated glomus cells from adult rabbit carotid bodies using the whole cell configuration of the patch-clamp technique. The NO donors sodium nitroprusside (SNP; 600 microM, n = 7) and spermine nitric oxide (SNO; 100 microM, n = 7) inhibited the Ca2+ current in glomus cells in a voltage-independent manner. These effects of NO donors were rapid in onset and peaked within 1 or 2 min. In contrast, the outward K+ current was unaffected by SNP (600 microM, n = 6), indicating that the inhibition by SNP was not a nonspecific membrane effect. 2-(4-carboxyphenyl)-4,4,5, 5-tetramethyl-imidazoline-1-oxyl-3-oxide (carboxy-PTIO; 500 microM), an NO scavenger, prevented inhibition of the Ca2+ current by SNP (n = 7), whereas neither superoxide dismutase (SOD; 2,000 U/ml, n = 4), a superoxide scavenger, nor sodium hydrosulfite (SHS; 1 mM, n = 7), a reducing agent, prevented inhibition of the Ca2+ current by SNP. However, SNP inhibition of the Ca2+ current was reversible in the presence of either SOD or SHS. These results suggest that NO itself inhibits Ca2+ current in a reversible manner and that subsequent formation of peroxynitrites results in irreversible inhibition. SNP inhibition of the Ca2+ current was not affected by 30 microM LY 83, 583 (n = 7) nor was it mimicked by 600 microM 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cGMP; n = 6), suggesting that the effects of NO on the Ca2+ current are mediated, in part, via a cGMP-independent mechanism. N-ethylmaleimide (NEM; 2.5 mM, n = 6) prevented the inhibition of the Ca2+ current by SNP, indicating that SNP is acting via a modification of sulfhydryl groups on Ca2+ channel proteins. Norepinephrine (NE; 10 microM) further inhibited the Ca2+ current in the presence of NEM (n = 7), implying that NEM did not nonspecifically eliminate Ca2+ current modulation. Nisoldipine, an L-type Ca2+ channel blocker (2 microM, n = 6), prevented the inhibition of Ca2+ current by SNP, whereas omega-conotoxin GVIA, an N-type Ca2+ channel blocker (1 microM, n = 9), did not prevent the inhibition of Ca2+ current by SNP. These results demonstrate that NO inhibits L-type Ca2+ channels in adult rabbit glomus cells, in part, due to a modification of calcium channel proteins. The inhibition might provide one plausible mechanism for efferent inhibition of carotid body activity by NO.  (+info)

Contribution of baroreceptors and chemoreceptors to ventricular hypertrophy produced by sino-aortic denervation in rats. (7/641)

1. To test whether sino-aortic denervation (SAD)-induced right ventricular hypertrophy (RVH) is a consequence of baroreceptor or chemoreceptor denervation, we compared the effects of aortic denervation (AD), carotid denervation (CD), SAD and a SAD procedure modified to spare the carotid chemoreceptors (mSAD), 6 weeks after denervation surgery in rats. A sham surgery group served as the control. 2. The blood pressure (BP) level was unaffected by AD, CD or SAD, but increased (9 %) following mSAD. The mean heart rate level was not affected. Short-term BP variability was elevated following AD (81 %), SAD (144 %) and mSAD (146 %), but not after CD. Baroreflex heart rate responses to phenylephrine were attenuated in all denervation groups. 3. Significant RVH occurred only following CD and SAD. These procedures also produced high mortality (CD and SAD) and significant increases in right ventricular pressures and haematocrit (CD). 4. Significant left ventricular hypertrophy occurred following CD, SAD and mSAD. Normalized left ventricular weight was significantly correlated with indices of BP variability. 5. These results suggest that SAD-induced RVH is a consequence of chemoreceptor, not baroreceptor, denervation. Our results also demonstrate that a mSAD procedure designed to spare the carotid chemoreceptors produced profound baroreflex dysfunction and significant left, but not right, ventricular hypertrophy.  (+info)

Contribution of peripheral chemoreception to the depression of the hypoxic ventilatory response during halothane anesthesia in cats. (8/641)

BACKGROUND: The effects of inhalational anesthetics on the hypoxic ventilatory response are complex. This study was designed to determine the contribution of peripheral chemoreception to the depression of hypoxic ventilatory response seen with halothane anesthesia. METHODS: Cats were anesthetized with pentobarbital sodium and alpha-chloralose and artificially ventilated. Respiratory output was evaluated by phasic inspiratory activity of the phrenic nerve. In 12 cats, this activity was measured during inhalation of an hypoxic gas mixture with halothane, 0, 0.1, and 0.8%, with intact or denervated carotid bodies. In 10 cats, a carotid body was isolated from the systemic circulation and perfused with hypoxic Krebs-Ringer solution equilibrated with halothane, 0, 0.1, and 0.8%. RESULTS: The hypoxic ventilatory response was depressed in a dose-dependent manner during halothane anesthesia. In carotid body perfusion studies, the response was significantly depressed only with halothane, 0.80%. CONCLUSION: The hypoxic ventilatory response is depressed by a high dose of halothane through a peripheral effect at the carotid body.  (+info)