High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. (1/58879)

BACKGROUND: Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. RESULTS: We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. CONCLUSIONS: We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.  (+info)

Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARalpha fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11;17)(q23;q21) APL patient. (2/58879)

Primary blasts of a t(11;17)(q23;q21) acute promyelocytic leukaemia (APL) patient were analysed with respect to retinoic acid (RA) and arsenic trioxide (As2O3) sensitivity as well as PLZF/RARalpha status. Although RA induced partial monocytic differentiation ex vivo, but not in vivo, As203 failed to induce apoptosis in culture, contrasting with t(15;17) APL and arguing against the clinical use of As203 in t(11;17)(q23;q21) APL. Prior to cell culture, PLZF/RARalpha was found to exactly co-localize with PML onto PML nuclear bodies. However upon cell culture, it quickly shifted towards microspeckles, its localization found in transfection experiments. Arsenic trioxide, known to induce aggregation of PML nuclear bodies, left the microspeckled PLZF/RARalpha localization completely unaffected. RA treatment led to PLZF/RARalpha degradation. However, this complete PLZF/RARalpha degradation was not accompanied by differentiation or apoptosis, which could suggest a contribution of the reciprocal RARalpha/PLZF fusion product in leukaemogenesis or the existence of irreversible changes induced by the chimera.  (+info)

Complete nucleotide sequence of the 27-kilobase virulence related locus (vrl) of Dichelobacter nodosus: evidence for extrachromosomal origin. (3/58879)

The vrl locus is preferentially associated with virulent isolates of the ovine footrot pathogen, Dichelobacter nodosus. The complete nucleotide sequence of this 27.1-kb region has now been determined. The data reveal that the locus has a G+C content much higher than the rest of the D. nodosus chromosome and contains 22 open reading frames (ORFs) encoding products including a putative adenine-specific methylase, two potential DEAH ATP-dependent helicases, and two products with sequence similarity to a bacteriophage resistance system. These ORFs are all in the same orientation, and most are either overlapping or separated by only a few nucleotides, suggesting that they comprise an operon and are translationally coupled. Expression vector studies have led to the identification of proteins that correspond to many of these ORFs. These data, in combination with evidence of insertion of vrl into the 3' end of an ssrA gene, are consistent with the hypothesis that the vrl locus was derived from the insertion of a bacteriophage or plasmid into the D. nodosus genome.  (+info)

Relationship between UDP-glucose 4-epimerase activity and oligoglucose glycoforms in two strains of Neisseria meningitidis. (4/58879)

Sodium dodecyl sulfate-polyacrylamide gel analysis of lipooligosaccharide (LOS) from Neisseria meningitidis has demonstrated considerable microheterogeneity in the variable region of LOS due to the presence of novel glycoforms. As a step toward understanding the basis for the expression of these novel glycoforms, we have examined the LOS structures and UDP-glucose 4-epimerase (epimerase) activity levels in two strains (NMB and MA-1) and their respective galE mutants. Strain NMB was found to have low epimerase activity and to contain multiple glycoforms, some of which appear to contain only glucose sugars. The galE mutant had only the oligoglucose glycoforms. Strain MA-1 had higher epimerase activity at both log and stationary phases (2- and 12.5-fold, respectively) and one glycoform with a putative lactosyl structure. Strain MA-1 galE had two glycoforms that contained one or two glucose residues. To understand the molecular basis for the different epimerase activities, we examined the predicted amino acid sequences of the respective galE open reading frames and determined the relative amounts of GalE protein. We found no significant differences between the predicted amino acid sequence of the GalE protein in NMB and that in MA-1. We observed no significant differences in the level of GalE protein between MA-1 and NMB at exponential or stationary phase. We also observed an 8.2-fold drop in epimerase activity in NMB between the log and stationary phases that was not due to the GalE protein level or low glucose levels.  (+info)

Characterization of human bactericidal antibodies to Bordetella pertussis. (5/58879)

The Bordetella pertussis BrkA protein protects against the bactericidal activity of complement and antibody; however, some individuals mount an immune response that overcomes this bacterial defense. To further characterize this process, the bactericidal activities of sera from 13 adults with different modes of exposure to B. pertussis (infected as adults, occupational exposure, immunized with an acellular vaccine, or no identified exposure) against a wild-type strain and a BrkA complement-sensitive mutant were evaluated. All of the sera killed the BrkA mutant, suggesting past exposure to B. pertussis or cross-reactive organisms. Several samples had no or minimal activity against the wild type. All of the sera collected from the infected and occupationally exposed individuals but not all of the sera from vaccinated individuals had bactericidal activity against the wild-type strain, suggesting that some types of exposure can induce an immune response that can overcome the BrkA resistance mechanism. Adsorbing serum with the wild-type strain removed the bactericidal antibodies; however, adsorbing the serum with a lipopolysaccharide (LPS) mutant or an avirulent (bvg mutant) strain did not always result in loss of bactericidal activity, suggesting that antibodies to either LPS or bvg-regulated proteins could be bactericidal. All the samples, including those that lacked bactericidal activity, contained antibodies that recognized the LPS of B. pertussis. Bactericidal activity correlated best with the presence of the immunoglobulin G3 (IgG3) antibodies to LPS, the IgG subtype that is most effective at fixing complement.  (+info)

Characterization of Moraxella (Branhamella) catarrhalis lbpB, lbpA, and lactoferrin receptor orf3 isogenic mutants. (6/58879)

Pathogenic members of the family Neisseriaceae produce specific receptors to acquire iron from their host's lactoferrin and transferrin. Recently, putative Moraxella catarrhalis lactoferrin receptor genes and a third open reading frame (lbpB, lbpA, and orf3) were cloned and sequenced. We describe the preliminary characterization of isogenic mutants deficient in LbpB, LbpA, or Orf3 protein.  (+info)

Mechanisms related to [18F]fluorodeoxyglucose uptake of human colon cancers transplanted in nude mice. (7/58879)

[18F]Fluorodeoxyglucose ([18F]FDG), a glucose analogue, has been widely used for tumor imaging. To investigate the mechanisms related to [18F]FDG uptake by tumors, an experiment involving nude mice was performed. METHODS: Human colon cancer cell lines SNU-C2A, SNU-C4 and SNU-C5 were transplanted to nude mice. Using immunohistochemical staining and Western blot, the expression of glucose transporter (Glut) isoforms (Glut-1 through -5) in xenografted tumors was analyzed. For the analysis of messenger ribonucleic acid (mRNA) expression, reverse-transcription polymerase chain reaction and Northern blot were used and the enzyme activity of hexokinase in cancer tissues was measured by continuous spectrophotometric rate determination. RESULTS: [18F]FDG uptake in SNU-C4 and SNU-C5 cells was higher than in normal colon cells. Among these cells and xenografted tumors, SNU-C5 showed the highest level of [18F]FDG uptake, followed by SNU-C4 and SNU-C2A. An immunostaining experiment showed intense staining of Glut-1 in SNU-C5 tumors but somewhat faint staining in SNU-C4. SNU-C5 tumors also showed positive staining with Glut-3, although this was not the case with SNU-C2A and SNU-C4. Western blot analysis showed the expression of Glut-1 and Glut-3 in all tumors. Experiments involving Northern blot analysis and reverse-transcription polymerase chain reaction confirmed the overexpression of Glut-1 mRNA in all tumors, with the highest level in SNU-C5. The level of Glut-3 mRNA was also elevated in SNU-C5 tumors but not in SNU-C2A and SNU-C4. The enzyme activity of hexokinase did not vary among different tumors. CONCLUSION: Gluts, especially Glut-1, are responsible for [18F]FDG uptake in a nude mouse model of colon cancer rather than hexokinase activity. Increased numbers of glucose transporters at the plasma membrane of cancer cells is attributed to an increased level of transcripts of glucose transporter genes and may be a cause of increased [18F]FDG uptake, at least in colon cancer tumors.  (+info)

Cloning of the peroxiredoxin gene family in rats and characterization of the fourth member. (8/58879)

Peroxiredoxin (PRx) exhibits thioredoxin-dependent peroxidase activity and constitutes a family of proteins. Four members of genes from rat tissues were isolated by PCR using degenerated primers based on the sequences which encode a pair of highly conserved Cys-containing domains, and were then cloned to full-length cDNAs. These included two genes which have previously been isolated in rats, PRx I and PRx II, and two rat homologues of PRx III and PRx IV. We showed, for the first time, the simultaneous expression of all four genes in various rat tissues by Northern blotting. Since a discrepancy exists regarding cellular distribution, we further characterized PRx IV by expressing it in COS-1 cells. This clearly demonstrates that PRx IV is a secretory form and functions within the extracellular space.  (+info)