The role of optical defocus in regulating refractive development in infant monkeys. (1/1682)

Early in life, the two eyes of infant primates normally grow in a coordinated manner toward the ideal refractive state. We investigated the extent to which lens-induced changes in the effective focus of the eye affected refractive development in infant rhesus monkeys. The main finding was that spectacle lenses could predictably alter the growth of one or both eyes resulting in appropriate compensating refractive changes in both the hyperopic and myopic directions. Although the effective operating range of the emmetropization process in young monkeys is somewhat limited, the results demonstrate that emmetropization in this higher primate, as in a number of other species, is an active process that is regulated by optical defocus associated with the eye's effective refractive state.  (+info)

The growing eye: an autofocus system that works on very poor images. (2/1682)

It is unknown which retinal image features are analyzed to control axial eye growth and refractive development. On the other hand, identification of these features is fundamental for the understanding of visually acquired refractive errors. Cyclopleged chicks were individually kept in the center of a drum with only one viewing distance possible. Defocusing spectacle lenses were used to stimulate the retina with defined defocus of similar magnitude but different sign. If spatial frequency content and contrast were the only cues analyzed by the retina, all chicks should have become myopic. However, compensatory eye growth was still always in the right direction. The most likely cues for emmetropization, spatial frequency content and image contrast, do therefore not correlate with the elongation of the eye. Rather, the sign of defocus was extracted even from very poor images.  (+info)

The refractive development of untreated eyes of rhesus monkeys varies according to the treatment received by their fellow eyes. (3/1682)

To determine the extent to which the visual experience of one eye may influence the refractive development of its fellow eye, we analyzed the data of untreated (UT) eyes of monkeys that received different types of unilateral pattern deprivation. Subjects were 15 juvenile rhesus monkeys, with five monkeys in each of three treatment groups: aphakic eyes with optical correction (AC), aphakic eyes with no correction (ANC), and eyes that were occluded with an opaque contact lens (OC). Under general anaesthesia, refractive error (D) was determined by cycloplegic retinoscopy and axial length (mm) was determined with A-scan ultrasonography. For measurements of refractive error of the UT eyes, there was a significant main effect of groups according to the treatment of the fellow eyes, F(2, 12) = 6.6. While UT eyes paired with AC fellow eyes (mean = +4.2 D) were significantly more hyperopic than the eyes of age-matched normal monkeys (mean = +2.4 D), t(25), = 2.5, UT eyes paired with OC fellow eyes (mean = -0.5 D) were significantly more myopic than the eyes of normal monkeys, t(25) = -9. UT eyes paired with ANC fellow eyes (mean = +1.9 D) were not significantly different from normal eyes. For measurements of axial length there was also a significant main effect of groups, F(2, 12) = 6.9. While UT eyes paired with AC fellow eyes (mean = 16.9 mm) were significantly shorter than the eyes of age-matched normal monkeys (mean = 17.5 mm), t(25) = 2.3, UT eyes paired with OC fellow eyes (mean = 18.1 mm) were significantly longer than the eyes of normal monkeys, t(25) = 2.3. UT eyes paired with ANC fellow eyes (mean = 17.5 mm) were not significantly different from the eyes of normal monkeys. The measurements of axial length and of refractive error of the UT eyes were also significantly correlated with one another, probably indicating that the differences in refractive error were due to differences in axial length, r = -0.8. The present data reveal that despite normal visual experience, UT eyes can have their refractive development altered, systematically, simply as a function of the type of pattern deprivation received by their fellow eyes. These data add to the growing evidence that there is an interocular mechanism that is active during emmetropization. As a consequence, future models of eye growth will need to consider both: (1) the direct influence of visual input on the growing eye; as well as (2) the indirect influence coming from the fellow eye.  (+info)

Biometrical threshold of biparietal diameter for certain fetal sex assignment by ultrasound. (4/1682)

OBJECTIVES: The aim of this study was to establish the biometric threshold of biparietal diameter (BPD), assumed to be an independent variable of gestational age, at which 100% accuracy in the assessment of fetal sex by ultrasonography is achievable. METHODS: Transvaginal and/or transabdominal sonography was used for detecting the 'sagittal sign' as a marker of fetal sex in 385 fetuses with BPD between 18 and 29 mm. The results of ultrasound examination were compared with sex at birth or with karyotype obtained from amniotic fluid cells or chorionic villus sampling. RESULTS: Fetal sex assignment was feasible in 337 of 385 cases (87.5%). Of the 312 fetuses with known fetal sex outcome, 164 were males and 148 were females. An accuracy rate of 100% was achieved when a BPD of > or = 23 mm was obtained. CONCLUSION: This study provides important information about the earliest stage of fetal development, expressed in terms of BPD, at which a diagnosis of fetal sex can be made with 100% accuracy.  (+info)

Morphological changes in the retina of Aequidens pulcher (Cichlidae) after rearing in monochromatic light. (5/1682)

We investigate the processing of chromatic information in the outer retina of a cichlid fish, Aequidens pulcher. The colour opponent response characteristics of some classes of cone-specific horizontal cells in the fish retina are the result of feedforward-feedback loops with cone photoreceptors. To interfere with the reciprocal transmissions of signals, animals were reared in monochromatic lights which preferentially stimulated the spectrally different cone types. Here we report the effects on the cones. Their absorbance spectra were largely unaffected, indicating no change in photopigment gene expression. Significant changes were observed in the cone outer segment lengths and the frequencies of spectral cone types. Quantum catch efficiency and survival of cones appear to be controlled in a spectrally selective way. Our results suggest that the retina responds to spectral deprivation in a compensatory fashion aimed at balancing the input from the different cone types to second order neurons.  (+info)

Long-term changes in retinal contrast sensitivity in chicks from frosted occluders and drugs: relations to myopia? (6/1682)

Experiments in animal models have shown that the retinal analyzes the image to identify the position of the plane of focus and fine-tunes the growth of the underlying sclera. It is fundamental to the understanding of the development of refractive errors to know which image features are processed. Since the position of the image plane fluctuates continuously with accommodative status and viewing distance, a meaningful control of refractive development can only occur by an averaging procedure with a long time constant. As a candidate for a retinal signal for enhanced eye growth and myopia we propose the level of contrast adaptation which varies with the average amount of defocus. Using a behavioural paradigm, we have found in chickens (1) that contrast adaptation (CA, here referred to as an increase in contrast sensitivity) occurs at low spatial frequencies (0.2 cyc/deg) already after 1.5 h of wearing frosted goggles which cause deprivation myopia, (2) that CA also occurs with negative lenses (-7.4D) and positive lenses (+6.9D) after 1.5 h, at least if accommodation is paralyzed and, (3) that CA occurs at a retinal level or has, at least, a retinal component. Furthermore, we have studied the effects of atropine and reserpine, which both suppress myopia development, on CA. Quisqualate, which causes retinal degeneration but leaves emmetropization functional, was also tested. We found that both atropine and reserpine increase contrast sensitivity to a level where no further CA could be induced by frosted goggles. Quisqualate increased only the variability of refractive development and of contrast sensitivity. Taken together, CA occurring during extended periods of defocus is a possible candidate for a retinal error signal for myopia development. However, the situation is complicated by the fact that there must be a second image processing mode generating a powerful inhibitory growth signal if the image is in front of the retina, even with poor images (Diether, S., & Schaeffel, F. (1999).  (+info)

Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. (7/1682)

Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions and limitations of the methods reviewed. There are several methods available to analyse FNI data indicating that none is optimal for all purposes. In order to make optimal use of the methods available it is important to know the limits of applicability. For the interpretation of FNI results it is also important to take into account the assumptions, approximations and inherent limitations of the methods used. This paper gives a brief overview over some non-inferential descriptive methods and common statistical models used in FNI. Issues relating to the complex problem of model selection are discussed. In general, proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference. The non-inferential section describes methods that, combined with inspection of parameter estimates and other simple measures, can aid in the process of model selection and verification of assumptions. The section on statistical models covers approaches to global normalization and some aspects of univariate, multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connectivity are discussed. In the companion paper we review issues related to signal detection and statistical inference.  (+info)

Statistical limitations in functional neuroimaging. II. Signal detection and statistical inference. (8/1682)

The field of functional neuroimaging (FNI) methodology has developed into a mature but evolving area of knowledge and its applications have been extensive. A general problem in the analysis of FNI data is finding a signal embedded in noise. This is sometimes called signal detection. Signal detection theory focuses in general on issues relating to the optimization of conditions for separating the signal from noise. When methods from probability theory and mathematical statistics are directly applied in this procedure it is also called statistical inference. In this paper we briefly discuss some aspects of signal detection theory relevant to FNI and, in addition, some common approaches to statistical inference used in FNI. Low-pass filtering in relation to functional-anatomical variability and some effects of filtering on signal detection of interest to FNI are discussed. Also, some general aspects of hypothesis testing and statistical inference are discussed. This includes the need for characterizing the signal in data when the null hypothesis is rejected, the problem of multiple comparisons that is central to FNI data analysis, omnibus tests and some issues related to statistical power in the context of FNI. In turn, random field, scale space, non-parametric and Monte Carlo approaches are reviewed, representing the most common approaches to statistical inference used in FNI. Complementary to these issues an overview and discussion of non-inferential descriptive methods, common statistical models and the problem of model selection is given in a companion paper. In general, model selection is an important prelude to subsequent statistical inference. The emphasis in both papers is on the assumptions and inherent limitations of the methods presented. Most of the methods described here generally serve their purposes well when the inherent assumptions and limitations are taken into account. Significant differences in results between different methods are most apparent in extreme parameter ranges, for example at low effective degrees of freedom or at small spatial autocorrelation. In such situations or in situations when assumptions and approximations are seriously violated it is of central importance to choose the most suitable method in order to obtain valid results.  (+info)