Loading...
(1/81452) Extra-vesicular binding of noradrenaline and guanethidine in the adrenergic neurones of the rat heart: a proposed site of action of adrenergic neurone blocking agents.

1 The binding and efflux characteristics of [14C]-guanethidine and [3H]-noradrenaline were studied in heart slices from rats which were pretreated with reserpine and nialamide. 2 Binding of both compounds occurred at extra-vesicular sites within the adrenergic neurone. After a brief period of rapid washout, the efflux of [14C]-guanethidine and [3H]-noradrenaline proceeded at a steady rate. The efflux of both compounds appeared to occur from a single intraneuronal compartment. 3 (+)-Amphetamine accelerated the efflux of [14C]-noradrenaline; this effect was inhibited by desipramine. 4 Unlabelled guanethidine and amantadine also increased the efflux of labelled compounds. Cocaine in high concentrations increased slightly the efflux of [14C]-guanethidine but not that of [3H]-noradrenaline. 5 Heart slices labelled with [3H]-noradrenaline became refractory to successive exposures to releasing agents although an appreciable amount of labelled compound was still present in in these slices. 6 It is suggested that [14C]-guanethidine and [3H]-noradrenaline are bound at a common extravesicular site within the adrenergic neurone. Binding of guanethidine to the extra-vesicular site may be relevant to its pharmacological action, i.e., the blockade of adrenergic transmission.  (+info)

(2/81452) The bioavailability, dispostion kinetics and dosage of sulphadimethoxine in dogs.

The disposition kinetics of sulphadimethoxine were studied in six normal beagle dogs after intravenous injection of a single dose (55 mg/kg). The median (range) distribution and elimination half times of the drug were 2.36 (2.06-3.35) hours and 13.10 (9.71-16.50) hours, respectively. Total body clearance of the drug had a median value of 21.7 ml/kg/h and a mean value of 21.4 ml/kg/h. While the overall tissue to plasma level ratio (k12/k21) of the drug was 0.55 after distribution equilibrium had been attained, analogue computer simulated curves showed that at 24 hours the fractions (percentage) of the dose in the central and tissue compartments were 12 and 11%, respectively. The drug was shown, by equilibrium dialysis method, to be highly bound to plasma proteins (greater than 75%) within the usual therapeutic range (50 to 150 mug/ml) of plasma levels. The systemic availability of sulphadimethoxine from the oral suspension was 32.8% (22.5-80.0). Since the absorption half time, 1.87 (0.86-3.22) hours, was considerably shorter than the half-life, 13.10 (9.71-16.50) hours, of the drug, the rate of absorption would have little influence on the dosage regimen. Based on the experimental data obtained, a satisfactory dosage regimen might consist of a priming dose of 55 mg/kg by the intravenous route and maintenance doses of either 27.5 mg/kg of sulphadimethoxine injection given intravenously or 55 mg/kg of the oral suspension administered at 24 hour intervals. The adequacy and duration of therapy will depend upon the clinical response obtained.  (+info)

(3/81452) Specific receptors for glucocorticoid in the cytoplasm of the liver of AH 130 tumor-bearing rats.

Specific receptors for dexamethasone (11beta, 17alpha, 21-trihydroxy-9alpha-fluoro-16alpha-methyl-1,4-pregnadiene-3,20-dione) in the cytoplasm of the liver from AH 130 (solid type) tumor-bearing rats markedly increased in the advanced stage of tumor growth. The cytoplasmic receptors of the livers of normal and tumor-bearing rats differed in their affinities for dexamethasone, and their apparent equilibrium (dissociation) constants (K) for dexamethasone were 4.0 and 2.6 X 10(-9) M, respectively. The rates of dissociation of dexamethasone-receptor complexes and the heat denaturations of the receptors in the livers of normal and tumor-bearing rats were similar. The glucocorticoid receptors of tumor-bearing rat liver had slightly higher affinities than did those of normal liver for all the steroids tested. Only a trace amount of receptors for dexamethasone could be detected in the cytoplasm of AH 130 ascites cells.  (+info)

(4/81452) The interaction of rhodium(II) carboxylates with enzymes.

The effect of rhodium(II) acetate, propionate, and methoxyacetate on the activity of 17 enzymes was evaluated. The enzymes were preincubated with the rhodium(II) complexes in order to detect irreversible inhibition. All enzymes that have essential sulfhydryl groups in or near their active site were found to be irreversibly inhibited. Those enzymes without essential sulfhydryl groups were not affected. In each case, the rate of inactivation closely paralleled the observed toxicity and antitumor activity of rhodium(II) carboxylates; that is, rhodium(II) propionate greater than rhodium(II) acetate greater than rhodium(II) methoxyacetate. In addition, those enzymes that have been demonstrated to be most sensitive to established sulfhydryl inhibitors, such as glyceraldehyde-3-phosphate dehydrogenase, were also most sensitive to rhodium(II) carboxylate inactivation. Proton nuclear magnetic resonance measurements made during the titration of rhodium(II) acetate with cysteine showed that breakdown of the carboxylate cage occurred as a result of reaction with this sulfhydryl-containing amino acid.  (+info)

(5/81452) The direct spectrophotometric observation of benzo(a)pyrene phenol formation by liver microsomes.

Optical spectral repetitive scan analysis during the oxidative metabolism of benzo(a)pyrene by liver microsomal suspensions reveals the time-dependent formation of an intermediate(s) of which the visible spectra resemble those of several benzo(a)pyrene phenols. Liver microsomes from 3-methylcholanthrene-treated rats showed a greater rate of formation of the phenols than did microsomes from control animals; the rate of formation catalyzed by liver microsomes from phenobarbital-pretreated rats was intermediate. When 3-hydroxybenzo(a)pyrene was used as a standard for comparison of activity, the rates of formation of phenols were compared when measured by fluorometric, spectrophotometric, or high-pressure liquid chromatographic analytical techniques. An epoxide hydrase inhibitor, 1,1,1-trichloropropene-2,3-oxide, enhanced phenol formation regardless of the source of liver microsomes, and 7,8-benzoflavone inhibited control and 3-methylcholanthrene-induced microsomal metabolism of benzo(a)pyrene, 7,8-Benzoflavone did not effect benzo(a)pyrene metabolism by liver microsomes from phenobarbital-pretreated rats. The effect of inhibitors on the spectrophotometric assay correlates well with the results obtained from benzo(a)pyrene metabolite analysis using high-pressure liquid chromatography.  (+info)

(6/81452) Differences in benzo(a)pyrene metabolism between rodent liver microsomes and embryonic cells.

Differences in benzo(a)pyrene metabolite pattern have been shown by rodent liver microsomes (Sprague-Dawley) and rodent embryo cells from Syrian hamsters and NIH Swiss mice. Rodent liver induced by methylcholanthrene shows marked quantitative variation between species. Additional pattern changes were found in mouse and hamster embryo secondary cultures with a reduction of the K-region metabolites and a marked increase in 9-hydroxybenzo(a)-pyrene. These results are indicative of a region-specific attack on the carcinogen by the cell monooxygenases which is distinct from the liver attack of microsomal enzymes on benzo(a)pyrene. These results suggest that activation and detoxification of benzo(a)pyrene may be species and tissue variable, and susceptibility and resistence to malignant transformation may be predicted on induction of a fortuitous combination of intermediate metabolic steps.  (+info)

(7/81452) Action of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver.

The effects of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver were investigated. The enzyme was isolated from the nuclear fraction essentially according to the method of Baril et al.; it was characterized as the alpha polymerase on the basis of its response to synthetic templates and its inhibition with N-ethylmaleimide. Although polycytidylic acid had no effect on the DNA polymerase alpha either as a template or as an inhibitor, partially thiolated polycytidylic acid (MPC) was found to be a potent inhibitor, its activity being directly related to its extent of thiolation (percentage of 5-mercaptocytidylate units in the polymer). In comparison, the DNA polymerase beta which was purified from normal rat liver nuclear fraction, was much less sensitive to inhibition by MPC. Analysis of the inhibition of the alpha polymerase by the method of Lineweaver and Burk showed that the inhibitory action of MPC was competitively reversible with the DNA template, but the binding of the 7.2%-thiolated MPC to the enzyme was much stronger than that of the template (Ki/Km less than 0.03). Polyuridylic acid as such showed some inhibitory activity which increased on partial thiolation, but the 8.4%-thiolated polyuridylic acid was less active than the 7.2% MPC. When MPC was annealed with polyinosinic acid, it lost 80% of its inhibitory activity in the double-stranded configuration. However, 1 to 2%-thiolated DNA isolates were significantly more potent inhibitors than were comparable (1.2%-thiolated) MPC and showed competitive reversibility with the unmodified (but "activated") DNA template. These results indicate that the inhibitory activities of partially thiolated polynucleotides depend not only on the percentage of 5-mercapto groups but also on the configuration, base composition, and other specific structural properties.  (+info)

(8/81452) The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture.

We have established or characterized six lines of human breast cancer maintained in long-term tissue culture for at least 1 year and have examined these lines for estrogen responsiveness. One of these cell lines, MCF-7, shows marked stimulation of macromolecular synthesis and cell division with physiological concentrations of estradiol. Antiestrogens are strongly inhibitory, and at concentrations greater than 3 X 10(-7) M they kill cells. Antiestrogen effects are prevented by simultaneous treatment with estradiol or reversed by addition of estradiol to cells incubated in antiestrogen. Responsive cell lines contain high-affinity specific estradiol receptors. Antiestrogens compete with estradiol for these receptors but have a lower apparent affinity for the receptor than estrogens. Stimulation of cells by estrogens is biphasic, with inhibition and cell death at concentrations of 17beta-estradiol or diethylstilbestrol exceeding 10(-7) M. Killing by high concentrations of estrogen is probably a nonspecific effect in that we observe this response with 17alpha-estradiol at equivalent concentrations and in the otherwise unresponsive cells that contain no estrogen receptor sites.  (+info)